首页|微型高比功率热声斯特林发电机实验研究

微型高比功率热声斯特林发电机实验研究

扫码查看
高比功率百瓦级便携电源在户外运动、应急救灾等场景有着重要需求。热声斯特林发电机因其外燃属性而燃料选择性广泛,同时兼具高效、紧凑、可靠和静音等特点,是构建便携式电源系统的重要发电技术。本文首次提出采用螺旋管束式热端换热器来提升燃烧-交变流动换热性能和比功率。首先基于热声学的阻抗匹配和燃烧传热耦合,设计并研制了一套百瓦级热声斯特林发电系统;然后实验考察了不同工作压力、负载、燃烧功率下的输出特性;最后开展了损失分析。初步实验结果表明,该发电系统在管壁侧烟气温度为765℃时的最大输出电功为415 W,以柴油热值计算的对应热电效率为13。9%。受益于135 Hz的超高工作频率和轻量化设计,发电机本体的比功率达到112 W/kg,展现出突出的应用潜力。
Experimental Study of a Miniature High Specific Power Thermoacoustic Stirling Generator
A highly efficient,portable power supply capable of delivering several hundred watts is in high demand for applications such as outdoor sports and emergency relief efforts.The external combustion thermoacoustic Stirling generator is a key technology for developing such power sys-tems due to its fuel flexibility,high efficiency,compactness,reliability,and quiet operation.This paper presents a novel approach using a spiral tube hot-end heat exchanger to enhance combustion-alternating flow heat transfer performance and specific power.A 300-watt-class thermoacoustic Stirling power generation system is designed and constructed,leveraging impedance matching and combustion-heat transfer coupling.The system's output characteristics are experimentally examined under varying operating conditions,and a comprehensive loss analysis is conducted.Preliminary ex-perimental results show that the power generation system achieves a maximum output electrical power of 415 W at a flue gas temperature of 765℃,with a corresponding thermoelectric efficiency of 13.9%based on the diesel calorific value.With an ultra-high operating frequency of 135 Hz and lightweight design,the generator body achieves a specific power of 112 W/kg,demonstrating significant application potential.

ultra-high frequencyspiral tube hot-end heat exchangerthermoacoustic stirling ge-neratoroutput characteristics

肖望、余国瑶、马英、马壮、成阳斌、罗二仓

展开 >

低温科学与技术重点实验室,中国科学院理化技术研究所,北京 100190

中国科学院大学,北京 100049

齐鲁中科光物理与工程技术研究院,济南 251000

超高频 螺旋管束换热器 热声斯特林 输出特性

国家自然科学基金面上项目国家自然科学基金面上项目

5230603151876214

2024

工程热物理学报
中国工程热物理学会 中国科学院工程热物理研究所

工程热物理学报

CSTPCD北大核心
影响因子:0.4
ISSN:0253-231X
年,卷(期):2024.45(7)