Currently,the utilization of solar energy based on the plasmon resonance effect is one of the economical,effective,and environmentally friendly ways to resolve issues of anti/de-icing.This study proposes a new transparent photothermal film based on plasmonic particles.The apparent radiation characteristics of the film are simulated via the combination of the Discrete Dipole Ap-proximation method,Mie theory,and Monte Carlo method.The results show that the transparent photothermal film selectively transmits visible light and absorbs ultraviolet,blue-violet,and infrared light.It achieves a non-visible light absorbance of 82.2%,a blue light transmittance of 91.8%,and a non-blue light transmittance of 78.2%.With different surface wettabilities,the Monte Carlo ray tracing method is employed to simulate the light transfer through the ice droplets.The results show that the super-hydrophilic surfaces have a minimal impact on transmittance and haze,and the transmittance of hydrophobic surfaces is the lowest.This work provides a new option for transparent photothermal anti/de-icing materials.