首页|基于跨声速两相膨胀器的新型氦低温级制冷循环研究

基于跨声速两相膨胀器的新型氦低温级制冷循环研究

扫码查看
在"双碳"目标的背景下,由于跨声速两相膨胀器(TTPE)具有膨胀制冷效果好、无运动部件等优势,本文将其引入新型氦低温级制冷循环中,对其开展了热力分析与模拟计算。结果表明:TTPE的最优入口压力是1600 kPa,此时COP和相对卡诺效率分别为0。368和43。1%。随着TTPE入口温度的降低,COP和相对卡诺效率最大分别可达0。468和43。6%。当两相分离段的出口压力升高时,COP和相对卡诺效率分别可以增加至0。413和59。0%。随着Laval喷管等熵效率的提升,COP和相对卡诺效率的最大值分别为0。435和50。8%。热力分析以及模拟结果表明:新型氦低温级制冷循环具有良好的发展前景,为氦气高效制冷领域的研究提供了一种参考。
Research on a Novel Helium Cryogenic Refrigeration Cycle on the Basis of a Transonic Two-Phase Expander
In the context of the"dual carbon target",the transonic two-phase expander(TTPE)is introduced into a new helium cryogenic refrigeration cycle,and its thermal analysis and simulation are carried out because of its cutting edges including excellent expansion refrigeration effect and no moving parts.The results indicate that the optimal inlet pressure of TTPE is 1600 kPa,when the COP and relative Carnot efficiency are 0.368 and 43.1%,respectively.As the inlet temperature of TTPE decreases,COP and relative Carnot efficiency can reach a maximum of 0.468 and 43.6%,separately.As the outlet pressure of the two-phase separation section increases,the COP and relative Carnot efficiency can increase to 0.413 and 59.0%,separately.With the elevation of the Laval nozzle isentropic efficiency,the maximum values of COP and relative Carnot efficiency are 0.435 and 50.8%,respectively.Thermal analysis and simulation results suggest that the novel helium cryogenic refrigeration cycle holds significant potential for development,serving as a reference for research on helium efficient refrigeration.

natural refrigerant Hetransonic two-phase expandernovel helium cryogenic refrig-eration cyclethermal analysis

陈宝生、曾钰培、邹爱红、罗二仓

展开 >

中国科学院理化技术研究所,北京 100190

中国科学院大学,北京 100049

自然制冷剂He 跨声速两相膨胀器 新型氦低温级制冷循环 热力分析

2024

工程热物理学报
中国工程热物理学会 中国科学院工程热物理研究所

工程热物理学报

CSTPCD北大核心
影响因子:0.4
ISSN:0253-231X
年,卷(期):2024.45(12)