首页|基于RBF和LSGRG的滤芯托架注塑成型质量控制与优化

基于RBF和LSGRG的滤芯托架注塑成型质量控制与优化

扫码查看
针对汽车用复杂交错薄壁格栅的滤芯托架体积收缩率大和生产能耗高的问题,采用有限元仿真分析方法,建立了复杂交错薄壁格栅的滤芯托架仿真分析的有限元模型,对塑件的体积收缩率和注塑过程中的最大锁模力进行了优化,以提高塑件成型质量和降低生产能耗.首先,基于最优拉丁超立方抽样(OLHS)方法和径向基函数(RBF)神经网络模型建立预测模型并对模型精度进行了验证;其次,通过分析20组计算数据并结合工程经验发现体积收缩率和最大锁模力呈相互冲突的关系,且对成型质量和能耗有较大的影响,为此采用大规模广义降阶梯度(LSGRG)技术对预测模型进行多目标寻优并得到最优的工艺参数组合,经过LSGRG方法优化的最大锁模力降低了10.30%,体积收缩率降低了27.61%,优化效果显著.最后,在注塑机上应用优化后的注塑工艺参数生产出了复杂交错薄壁格栅的滤芯托架,产品质量符合要求.提出的基于RBF神经网络模型和LSGRG技术的联合多目标优化方法可为同类型塑件的成型质量控制与优化提供借鉴.
Optimization and control of filter element bracket injection molding quality based on RBF and LSGRG
Aiming at the problems of large volume shrinkage rate and high production energy consumption of filter element bracket of complex staggered thin wall grille for automobile,finite element simulation method was used to establish the finite element model of filter element bracket simulation analysis of complex staggered thin wall grille,the volume shrinkage rate of plastic parts and the maximum clamping force in the injection process were optimized,so as to improve the molding quality of plastic parts and reduce the production energy consumption.Firstly,a prediction model was established based on optimal latin hyper-cube sampling(OLHS)method and radial basis function(RBF)neural network model,and the accuracy of the model was verified.Secondly,by analyzing 20 groups of calculation data and combining with engineering experience,it was found that the volume shrinkage rate and the maximum clamping force are in conflict with each other,and have a great impact on molding quality and energy consumption.For this reason,large scale generalized reduced gradient(LSGRG)technology was adopted.LSGRG was used for multi-objective optimization of the prediction model and the optimal combination of process parameters was obtained.The maximum mode-locking force optimized by LSGRG method was reduced by 10.30%,and the volume shrinkage rate was reduced by 27.61%.The optimization effect was significant.Finally,the filter element bracket with complexstaggered thin wall grating was produced by using the optimized injection molding process parameters on the injection molding machine,and the product quality met the requirements.The joint multi-objective optimization method based on RBF neural network model and LSGRG technology proposed in this paper can provide reference for the molding quality control and optimization of the same type of plastic parts.

filter element bracketmulti-objective optimizationoptimal latin hypercube samplingradial basis function neural networkLSGRG technique

刘晓坤、孙正阳、季宁、盛中庆、于洋洋、张学玲

展开 >

天津仁爱学院机械工程学院,天津 301636

天津圣达辰洋汽车部件有限公司,天津 301600

天津市生华厚德科技有限公司,天津 300182

天津大学内燃机燃烧学国家重点实验室,天津 300072

展开 >

滤芯托架 多目标优化 最优拉丁超立方抽样 径向基函数神经网络 LSGRG技术

天津市教委科研计划项目

2023KJ258

2024

工程塑料应用
中国兵器工业集团第五三研究所 中国兵工学会非金属专业委员会 兵器工业非金属材料专业情报网

工程塑料应用

CSTPCD北大核心
影响因子:0.371
ISSN:1001-3539
年,卷(期):2024.52(8)