首页|具有Logistic增长和Crowley-Martin型发生率的随机SIRS双流行病模型的动力学研究

具有Logistic增长和Crowley-Martin型发生率的随机SIRS双流行病模型的动力学研究

扫码查看
基于现实生活中多种疾病共存并且受环境噪声影响,建立了一个具有Logistic增长和Crowley-Martin型发生率的随机SIRS双流行传染病模型,目的在于讨论Logistic增长、Crowley-Martin型发生率和双流行传染病对模型全局动力学的影响.分析展示了模型的全局动力学由随机基本再生数决定.具体地,首先通过构造Lyapunov函数并利用Ito公式,证明了全局正解的存在唯一性;其次结合引入的随机基本再生数和构造的Lyapunov函数,应用LaSalle不变性原理得到决定疾病灭绝和持久的充分条件.结果表明:环境变化在一定条件下会对疾病起抑制作用.最后,通过数值模拟验证了理论结果的正确性.
Dynamical Analysis of Stochastic SIRS Double Epidemic Model with Logistic Growth and Crowley-Martin Incidence Rate
Based on the fact that many diseases coexist in real life and are affected by envi-ronmental noise,a stochastic SIRS double epidemic model with Logistic growth and Crowley-Martin type incidence is established to discuss the effects of Logistic growth,Crowley-Martin type incidence and double epidemic infectious diseases on the global dynamics of the model.It is obtained that the global dynamics of the model is determined by stochastic basic repro-duction number.Firstly,by constructing the Lyapunov function and using the Itô's formula,the existence and uniqueness of the global positive solution are proved,and then,by combining the stochastic basic reproduction number and the constructed Lyapunov function,the sufficient conditions for determining the extinction and persistence of the disease are obtained by using the LaSalle invariance principle.The results show that the environmental change can inhibit the disease under certain conditions.Finally,the correctness of the theoretical results is verified by numerical simulation.

Logistic growthCrowley-Martin incidence ratedouble epidemicextinctionper-manence

赵彦军、苏丽、孙晓辉、李文轩

展开 >

吉林外国语大学国际商学院,长春 130117

吉林大学数学学院,长春 130012

Logistic增长 Crowley-Martin型发生率 双流行病 灭绝 持久

国家自然科学基金吉林省教育厅科学技术研究项目吉林省教育科学"十四五"规划2022年度课题

11271154JJKH20231389KJGH22708

2024

工程数学学报
西安交通大学

工程数学学报

CSTPCD北大核心
影响因子:0.302
ISSN:1005-3085
年,卷(期):2024.41(1)
  • 22