首页|具有季节性反应扩散疟疾模型的全局动力学

具有季节性反应扩散疟疾模型的全局动力学

扫码查看
疟疾是一种由疟原虫引起的传染病,它是通过成年雌性按蚊叮咬而引发的人与人之间传播.为了探讨空间异质和季节性对疟疾传播的影响,建立了一类周期的反应扩散模型.鉴于蚊子总密度趋于一个正的周期解,故对原系统的研究转而讨论其极限系统.首先定义了模型的基本再生数R0,然后利用单调次齐性系统理论表明了R0是决定极限系统全局动力学的一个阈值参数.具体地说,当R0 ≤ 1时,无病周期解是全局渐近稳定的;而当R0>1时,模型存在唯一正的周期解且它是全局渐近稳定的.最后,利用链传递集理论将极限系统的动力学提升到原系统.
Global Dynamics of a Reaction-diffusion Malaria Model with Seasonality
Malaria is an infectious disease caused by the Plasmodium parasite and it is trans-mitted among humans through bites of adult female Anopheles mosquitoes.To investigate the effects of spatial heterogeneities and seasonality,we develop a periodic reaction-diffusion model.Since the total density of mosquitoes tends to be a positive periodic solution,we are focus on the limiting system associated with the original system.We first introduce the basic reproduction number R0 and then show that R0 serves as a threshold parameter in determining the global dynamics of the limiting system by employing the theory of monotone and subhomogeneous systems.More precisely,the disease-free periodic solution is globally asymptotically stable if R0≤ 1,and the model admits a unique positive periodic solution that is globally asymptoti-cally stable when R0>1.Finally,the threshold type result for the limiting system is lifted to the original system with the help of the theory of chain transitive sets.

malariaseasonalityreaction-diffusion modelbasic reproduction numberthresh-old dynamics

张志雯、白振国

展开 >

西安电子科技大学数学与统计学院,西安 710126

疟疾 季节性 反应扩散模型 基本再生数 阈值动力学

国家自然科学基金

12371501

2024

工程数学学报
西安交通大学

工程数学学报

CSTPCD北大核心
影响因子:0.302
ISSN:1005-3085
年,卷(期):2024.41(3)
  • 28