首页|无界分块算子矩阵的可分解性及其应用

无界分块算子矩阵的可分解性及其应用

扫码查看
无界分块算子矩阵广泛地出现于系统理论、非线性分析以及发展方程问题等领域,在理论和实际应用两方面都受到广泛关注.首先,利用算子局部谱理论得到无界分块算子矩阵可分解性的刻画,其次,给出算子矩阵可分解性保持对角稳定的条件,推广并得到分块算子矩阵在无界情形下的一些局部谱性质.最后,作为应用考察Hamilton算子的可分解性并举例予以说明.
The Decomposability of Unbounded Block Operator Matrices and Its Application
Unbounded block operator matrix widely appears in the fields of system theory,non-linear analysis and evolution equation problems,and has been widely concerned in both theory and practical application.Firstly,the decomposability of unbounded block operator matrix is characterized by using local spectrum theory.Secondly,the condition that the decomposability of operator matrix remains diagonally stable is given,and some local spectral properties of block operator matrix are generalized and obtained.Finally,as an application,the decomposability of Hamilton operator is investigated and illustrated with examples.

decomposabilityunbounded block operator matrixlocal spectral propertyHamiltonian operator

王晓丽、阿拉坦仓

展开 >

内蒙古财经大学统计与数学学院,呼和浩特 010070

内蒙古自治区应用数学中心,呼和浩特 010022

可分解性 无界分块算子矩阵 局部谱性质 Hamilton算子

国家自然科学基金内蒙古自治区直属高校基本科研业务费专项

11761092NCYWT23022

2024

工程数学学报
西安交通大学

工程数学学报

CSTPCD北大核心
影响因子:0.302
ISSN:1005-3085
年,卷(期):2024.41(3)
  • 13