首页|严格双对角占优矩阵的Schur补的双对角占优度及其应用

严格双对角占优矩阵的Schur补的双对角占优度及其应用

扫码查看
矩阵Schur补是矩阵理论及其应用中的一个重要内容,具有广泛的应用背景.严格双对角占优矩阵是一类十分重要的特殊矩阵,流体力学的计算、材料模拟与设计、电磁场计算等领域与其有着密不可分的联系.对严格双对角占优矩阵的研究主要集中在两个方面:严格双对角占优矩阵的Schur补的特征值定位;严格双对角占优矩阵Schur补的逆的无穷范数估计.首先,给出了严格双对角占优矩阵的Schur补的双对角占优度的新下界估计式;然后,利用所给估计式获得了严格双对角占优矩阵Schur补新的特征值包含集和严格对角占优矩阵Schur补的逆的无穷范数的新上界.数值例子表明所获结果改进了一些现有结果.
Double Diagonally Dominant Degree of Schur Complement of the Strictly Double Diagonally Dominant Matrix and Its Application
Matrix Schur complement is an important part of matrix theory and its application,which has a wide application background.Strictly double diagonally dominant matrices are a very important class of special matrices,which are closely related to fluid mechanics calculation,material simulation and design,electromagnetic field calculation and so on.The study of strictly double diagonally dominant matrices mainly focuses on two aspects:eigenvalue localization of Schur complement of strictly double diagonally dominant matrices;Infinite norm estimation of inverse of Schur complement of strictly double diagonally dominant matrices.First,a new lower bound estimation of the double diagonally dominant degree of Schur complement of strictly double diagonally dominant matrices is given.Then,the new eigenvalue inclusion set of Schur complement of strictly double diagonally dominant matrices and the new upper bound of infinite norm for the inverse of Schur complement of strictly diagonally dominant matrices are obtained by using the obtained estimations.Numerical examples show that the results obtained in this paper improve some existing results.

double diagonally dominant matricesdouble diagonally dominant degreeSchur complementeigenvalue

王金辉、李耀堂

展开 >

云南大学数学与统计学院,昆明 650500

双对角占优矩阵 双对角占优度 Schur补 特征值

国家自然科学基金

11861077

2024

工程数学学报
西安交通大学

工程数学学报

CSTPCD北大核心
影响因子:0.302
ISSN:1005-3085
年,卷(期):2024.41(4)