首页|基于优化分层网格的多尺度有限元求解二维奇异摄动的计算格式与效率分析

基于优化分层网格的多尺度有限元求解二维奇异摄动的计算格式与效率分析

扫码查看
针对奇异摄动问题的二维对流扩散方程,应用多尺度有限元法在优化的分层网格上探究高效计算方案.多尺度有限元法仅需在粗网格求解子问题,详细给出了多尺度之间的数据映射关系,将相应的微观信息代入宏观尺度,用于求解降低规模的矩阵方程以节约计算资源.基于摄动系数迭代,形成自适应分层网格,能够有效地逼近奇异摄动的边界层.通过数学分析与数值实验,对比计算消耗和运行时间,验证了多尺度有限元法随着分层网格的加密,可以获得稳定、高阶、高效的一致收敛结果,凸显新方法的计算效率与应用优势.
Computational Scheme and Efficiency Analysis of Multiscale Finite Elements on Optimally Graded Meshes for Two-dimensional Singularly Perturbed Problems
As for a two-dimensional convection-diffusion equation in the singular perturbation,a novel multiscale finite element method based on the optimally graded meshes is proposed.The multiscale finite element method just solves the sub-problems on coarse meshes,and the data mapping relationship for related scales is provided in details and the microscopic information is inherited to the macroscopic level.Then the matrix is reduced and its matrix equation is ready for solving efficiently.Based on the perturbed parameter,an adaptively graded mesh is constructed from its iterative formula,and the meshes are capable of approximating the boundary layers effectively.Through mathematical analyses and numerical experiments,to contrast the computational cost and execution time,the multiscale strategy on the graded mesh is validated to be the stable,high-order and short-time uniform convergence.Its computational efficiency and application advantage are prominent.

singular perturbationtwo-dimensional graded meshmultiscale finite elementuniform convergence

孙美玲、江山、王晓莹

展开 >

南通大学数学与统计学院,南通 226019

南通职业大学数学教研室,南通 226007

奇异摄动 二维分层网格 多尺度有限元 一致收敛

国家自然科学基金南通市基础科学研究指令性项目南通职业大学自然科学研究重点项目

11771224JC202112323ZK03

2024

工程数学学报
西安交通大学

工程数学学报

CSTPCD北大核心
影响因子:0.302
ISSN:1005-3085
年,卷(期):2024.41(5)