首页|基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法

基于MCB-FAH-YOLOv8的钢材表面缺陷检测算法

扫码查看
针对现有基于深度学习的钢材表面缺陷检测算法存在误检、漏检和检测精度低等问题,提出一种基于改进 CBAM(modified CBAM,MCB)和可替换四头 ASFF 预测头(four-head ASFF prediction head,FAH)的YOLOv8 钢材表面缺陷检测算法,简记为 MCB-FAH-YOLOv8.通过加入改进后的卷积注意力机制模块(CBAM)对密集目标更好的确定;通过将 FPN 结构改为 BiFPN 更加高效的提取上下文信息;通过增加自适应特征融合(ASFF)自动找出最适合的融合特征;通过将SPPF模块替换为精度更高的SimCSPSPPF模块.同时,针对微小物体检测,提出了四头 ASFF 预测头,可根据数据集特点进行替换.实验结果表明,MCB-FAH-YOLOv8 算法在VOC2007 数据集上检测精度(mAP)达到了 88.8%,在 NEU-DET 钢铁缺陷检测数据集上检测精度(mAP)达到了81.8%,较基准模型分别提高了5.1%和3.4%,该算法在牺牲较少检测速度的情况下取得较高的检测精度,很好的平衡了算法的精度和速度.
Steel surface defect detection algorithm based on MCB-FAH-YOLOv8
To address the problems of misdetection,omission,and low detection accuracy in existing deep learning-based algorithms for detecting defects on steel surfaces,a YOLOv8 steel surface defect detection algorithm was proposed based on a modified CBAM(MCB)and replaceable four-head ASFF prediction head(FAH),abbreviated as MCB-FAH-YOLOv8.By integrating the modified convolutional attention mechanism module(CBAM),the algorithm could achieve better determination of the densely populated targets.By changing the FPN structure to BiFPN,it could extract context information more efficiently.It also incorporated adaptive feature fusion(ASFF)for the automatic identification of the most suitable fusion features.The algorithm also boosted its precision by replacing the SPPF module with the SimCSPSPPF module.Meanwhile,for tiny object detection,a four-head ASFF prediction head was proposed,designed to be replaceable based on the dataset characteristics.The experimental results demonstrated that the MCB-FAH-YOLOv8 algorithm could achieve a detection accuracy(mAP)of 88.8%on the VOC2007 dataset and 81.8%on the NEU-DET steel defect detection dataset,outperforming the benchmark model by 5.1%and 3.4%,respectively.This new algorithm achieved a higher detection accuracy with less loss of detection speed,thus ensuring a good balance between accuracy and speed.

MCB-FAH-YOLOv8defect detectionattention mechanismfour-head ASFF prediction headfeature fusion

崔克彬、焦静颐

展开 >

华北电力大学计算机系,河北 保定 071003

复杂能源系统与智能计算教育部工程研究中心,河北 保定 071003

MCB-FAH-YOLOv8 缺陷检测 注意力机制 四头ASFF预测头 特征融合

2024

图学学报
中国图学学会

图学学报

CSTPCD北大核心
影响因子:0.73
ISSN:2095-302X
年,卷(期):2024.45(1)
  • 26