首页|基于权衡因子和多维空间度量的高鲁棒性图像分割算法

基于权衡因子和多维空间度量的高鲁棒性图像分割算法

扫码查看
图像分割是计算机视觉的重要研究方向.聚类算法作为一种无监督的方法,一直是图像分割的有力工具.然而,当图像存在高强度噪声和复杂结构时,聚类算法的分割效果可能不理想.针对这一问题,提出了一种高鲁棒性的图像分割算法,该算法基于权衡因子和多维空间度量.首先,引入了一个权衡因子,通过调节该因子,可以有效地降低噪声对分割结果的影响.其次,结合了低维和高维的空间度量,能够捕捉图像中的线性和非线性特征.并更好地理解图像中的复杂结构和纹理,从而提高分割的准确性和鲁棒性.最后,利用改进的模糊聚类算法实现了图像分割.为了验证该算法的性能,在合成、自然和医学图像上进行了大量的实验,结果显示,该算法在分割性能上明显优于其他算法.
A highly robust image segmentation algorithm based on trade-off factors and multidimensional spatial metrics
Image segmentation is an important research direction in computer vision.Clustering algorithms,serving as an unsupervised method,have always been a powerful tool for image segmentation.However,in scenarios where image possess high-intensity noise and complex structures,the segmentation effect of clustering algorithms might prove unsatisfactory.To address this problem,a highly robust image segmentation algorithm was proposed based on trade-off factors and multi-dimensional space metrics.Firstly,a trade-off factor was introduced to effectively reduce the influence of noise on the segmentation result by adjusting the factor.Secondly,the algorithm integrated both low-dimensional and high-dimensional space metrics,enabling the capture of linear and nonlinear features in the image.In this way,the algorithm facilitated a more comprehensive understanding of the complex structure and texture in the image,thereby enhancing the accuracy and robustness of segmentation.Finally,the algorithm achieved image segmentation through the application of an enhanced fuzzy clustering algorithm.To verify the performance of the algorithm,extensive experiments were conducted on synthetic,natural,and medical images,and the results demonstrated that the proposed method significantly outperformed other algorithms in terms of segmentation.

image segmentationclusteringunsupervisedtrade-off factormultidimensional spatial metric

刘以、邱军海、张嘉星、张小峰、王桦、张彩明

展开 >

鲁东大学信息与电气工程学院,山东 烟台 264025

烟台工程职业技术学院,山东 烟台 264006

烟台理工学院信息工程学院,山东 烟台 264003

山东省高等学校青少年行为大数据智能分析文科实验室,山东 烟台 264025

山东大学软件学院,山东 济南 250014

展开 >

图像分割 聚类 无监督 权衡因子 多维空间度量

国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金国家自然科学基金烟台市科技创新发展计划基础研究项目

62007017U22A20336187311762171209621761402023JCYJ044

2024

图学学报
中国图学学会

图学学报

CSTPCD北大核心
影响因子:0.73
ISSN:2095-302X
年,卷(期):2024.45(3)
  • 35