首页|基于结构引导边界增长的大孔洞深度补全算法

基于结构引导边界增长的大孔洞深度补全算法

扫码查看
使用消费级深度相机采集深度信息时,受到设备、环境和物体材质等因素的影响,采集的深度信息往往存在缺失和孔洞,使得深度图像在后续的视觉任务中应用受限.现有的深度补全算法在解决大面积深度缺失时存在补全效果不佳和物体边界保持较差的问题.针对这 2 个问题,提出了基于结构引导边界增长的大孔洞深度补全算法.首先,结合 RGB 图像提供的边界信息,利用结构引导的边界增长策略补全物体边界处的深度缺失;最后,利用大孔洞切分填充与均值滤波相结合的方法,补全物体内部的大孔洞.实验结果表明,该算法能够在具有大面积缺失以及跨越物体缺失情况下有效地保持物体边界,同时能够补全大面积缺失的深度信息,并在多个数据集上的定量以及定性结果证明了该方法的有效性.
Depth completion with large holes based on structure-guided boundary propagation
When collecting depth information using consumer-depth cameras,the collected depth information is often influenced by factors such as equipment,environment,and object material,often leading to missing depth information and holes,limiting the application of depth images in subsequent vision tasks.Existing depth-completion algorithms often struggle to effectively address large-area depth missing,resulting in poor complementation effect and poor object boundary maintenance.To tackle these two problems,a depth-completion algorithm for large holes based on structure-guided boundary growth was proposed.First,combined with the boundary information provided by the RGB images,the structure-guided boundary growth strategy was employed to complement the depth loss at the object boundary.Finally,the large holes inside the object were complemented using a combination of large-hole cut-and-fill and mean filtering.The experimental results demonstrated that the algorithm was able to efficiently maintain object boundaries with large missing areas and across missing objects,while being able to complement the depth information of large missing areas.Quantitative and qualitative results on multiple datasets demonstrated the effectiveness of the method.

segmented imagestructural guidanceBézier curve fittinglarge hole completionboundary propagation

赵盛、吴晓群、刘鑫

展开 >

北京工商大学计算机与人工智能学院,北京 100048

食品安全大数据技术北京市重点实验室,北京 100048

分割图像 结构引导 Bézier曲线拟合 大孔洞补全 边界增长

国家自然科学基金面上项目

62272014

2024

图学学报
中国图学学会

图学学报

CSTPCD北大核心
影响因子:0.73
ISSN:2095-302X
年,卷(期):2024.45(3)
  • 27