首页|一种基于改进YOLOv8的轻量化路面病害检测算法

一种基于改进YOLOv8的轻量化路面病害检测算法

扫码查看
路面病害检测是实现道路损伤修复、确保行车安全的关键任务.针对现有路面病害检测算法精度低、成本高、模型参数大及难以应用于移动终端设备等问题,提出了一种基于改进YOLOv8n模型的轻量级检测算法YOLOv8n-GSBP.首先,通过在骨干网络引入C2f-GhostNetv2 模块保证检测精度并实现了模型轻量化,同时在SPPF模块后加入SimAM注意力机制模块,增强了网络对路面病害特征提取与背景环境特征区分的能力;其次,通过在颈部网络更换BiFPN结构增强模型多尺度特征融合能力,提升精确度和鲁棒性的同时解决了路面病害尺度差异较大问题;最后,基于参数共享原理改进检测头,并引入空间通道重建卷积模块 SCConv,实现了检测头的轻量化,降低了模型参数和计算量.在RDD2022 数据集上的实验结果表明,YOLOv8n-GSBP路面病害检测方法相较于YOLOv8n网络mAP50 虽只提高了 0.3%,但参数量降低了 55.6%、计算量大幅度降低至 36.7%,实现了对道路病害的实时准确检测.通过与其他主流目标检测算法的对比,进一步验证了算法的有效性和优越性.
A refined YOLOv8-based algorithm for lightweight pavement disease detection
Road surface defect detection is a crucial task for repairing road damage and ensuring driving safety.To address the issues of low detection accuracy,high costs,large model parameters,and the difficulty in applying existing road surface defect detection algorithms to mobile terminal devices,a lightweight detection algorithm,YOLOv8n-GSBP,based on the improved YOLOv8n model,was proposed.Firstly,the C2f-GhostNetv2 module was introduced into the backbone network to maintain detection accuracy while achieving model lightweight.Additionally,the SimAM module was added after the SPPF module to enhance the network's ability to extract road surface defect features and distinguish them from background environmental features.Secondly,the neck network was replaced with the BiFPN structure,and the model's multi-scale feature fusion capability was enhanced while addressing significant differences in road surface defect scales to improve precision and robustness.Finally,the head was improved by the parameter-sharing principle,and the spatial channel reconstruction convolutional module SCConv was introduced to achieve lightweight improvement of the detection head while reducing model parameters and computational complexity.The experimental results on the RDD2022 dataset showed that the mAP50 of YOLOv8n-GSBP road surface disease detection method was 0.3%higher than that of the YOLOv8n;however,the parameters were reduced by 55.6%and the computational complexity was reduced to 36.7%.Furthermore,through comparisons with other mainstream object detection algorithms,we further validated both effectiveness and superiority of our proposed algorithm.

deep learningpavement disease detectionYOLOv8nattention mechanismlightweight algorithm

胡凤阔、叶兰、谭显峰、张钦展、胡志新、方清、王磊、满孝锋

展开 >

东华理工大学机械与电子工程学院,江西 南昌 330013

江西省交通工程质量监督站试验检测中心,江西 南昌 330006

中化学交通建设集团第二工程有限公司,山东 青岛 266000

深度学习 路面病害检测 YOLOv8n 注意力机制 轻量级算法

江西省交通运输厅科技项目博士科研启动基金项目

2023H0031DHBK2023007

2024

图学学报
中国图学学会

图学学报

CSTPCD北大核心
影响因子:0.73
ISSN:2095-302X
年,卷(期):2024.45(5)