首页|基于改进YOLOv7-tiny的道路病害检测算法

基于改进YOLOv7-tiny的道路病害检测算法

扫码查看
针对目前道路病害检测方法参数量较大、小目标病害检测效果差且易出现误检、漏检的问题,提出一种基于改进YOLOv7-tiny的道路病害检测算法.引入深度可分离卷积(DSC)和无参注意力机制(SimAM)设计ELAN-SimAM-D结构,减少计算量和参数量以实现轻量化,同时加强模型的特征提取和特征融合的能力;引入自适应指数加权池化和自适应融合设计SPPAda结构作为空间金字塔池化结构,增强道路病害信息的保留程度,降低病害的漏检;新增 P2 小目标网络层,加强对较小目标病害的检测能力,提高模型的检测精度;设计新的损失函数NWD-EIOU替换原CIOU损失函数,提高小目标定位的精度.实验结果表明,相较于原始的YOLOv7-tiny算法,改进后的YOLOv7-tiny算法在自建实验数据集下mAP@0.5 达到 83.14%,提升了 3.50%,召回率上提升了 4.96%,模型的参数量降低了 33.84%,能够满足道路病害检测的需求.
Road defect detection algorithm based on improved YOLOv7-tiny
To address the current issues in road damage detection methods,such as large parameter sizes,poor performance in detecting small targets,and high rates of false positives and missed detections,an improved YOLOv7-tiny-based road defect detection algorithm was proposed.The ELAN-SimAM-D structure was designed by introducing depthwise separable convolution(DSC)and a parameter-free attention mechanism,which could reduce computational and parameter sizes to achieve a lightweight model while enhancing the model's feature extraction and fusion capabilities.The SPPAda structure,which incorporated adaptive exponential pooling and adaptive fusion,was introduced as a spatial pyramid pooling structure to enhance the retention of road defect information and improve detection accuracy.A new P2 small target network layer was added to strengthen the detection capability for smaller target defects,improving detection accuracy.A new loss function,NWD-EIOU,was designed to replace the original CIOU loss function,improving the localization accuracy for small targets.Experimental results showed that compared to the original YOLOv7-tiny algorithm,the improved YOLOv7-tiny algorithm achieved an mAP@0.5 of 83.14%on a self-built experimental dataset,an increase of 3.50%,with a 4.96%improvement in recall rate,and a 33.84%reduction in the model's parameter size,meeting the requirements for road defect detection.

YOLOv7-tinyroad defect detectionadaptive exponential poolingSimAM attention mechanismSPPAda structureP2 small target network layer

谢国波、林松泽、林志毅、吴陈锋、梁立辉

展开 >

广东工业大学计算机学院,广东 广州 510006

YOLOv7-tiny 道路病害检测 自适应指数加权池化 SimAM注意力机制 SPPAda结构 P2小目标网络层

国家自然科学基金项目

61802072

2024

图学学报
中国图学学会

图学学报

CSTPCD北大核心
影响因子:0.73
ISSN:2095-302X
年,卷(期):2024.45(5)