首页|面向无人机航拍图像的目标检测研究综述

面向无人机航拍图像的目标检测研究综述

Review on object detection in UAV aerial images

扫码查看
随着无人机和计算机视觉技术的快速发展与深度融合,面向无人机航拍图像的目标检测研究受到越来越多的关注,已广泛应用于精准农业、动物监测、城市管理、应急救援等领域.与普通视角下拍摄的图像相比,无人机航拍图像具有视野更广、目标尺寸显著缩小、视角和尺度灵活多变等特点,无法完全适用普通视角下的目标检测方法.基于此,首先详细回顾了普通视角下目标检测方法的研究进展,包括传统方法、深度学习方法和基于大模型的方法,随后综述了现有目标检测方法针对无人机航拍图像目标检测中的图像质量下降、尺度和视角变化、小目标检测难度大、复杂背景及遮挡、大视场中的不均衡,以及实时性要求高等 6 大难点问题提出的创新策略和优化方法.此外,归纳总结了无人机航拍图像目标检测数据集,并在 2 个具有代表性的数据集上对现有方法进行性能分析.最后,根据无人机航拍图像目标检测领域仍存在的问题,展望了未来可能的研究方向,为无人机航拍图像目标检测的发展和应用提供参考.
With the rapid development and deep integration of unmanned aerial vehicle(UAV)and computer vision technologies,research on object detection in UAV aerial images has gained increasing attention and has been widely applied in precision agriculture,animal monitoring,urban management,emergency rescue,and other fields.Compared to images captured from conventional perspectives,images acquired by UAVs feature a wider field of view,significantly reduced object size,and variations in viewpoint and scale,rendering conventional object detection methods inadequate.Accordingly,a detailed review of progress in object detection methods from a conventional perspective was first provided,including traditional methods,deep learning methods,and large-model-based methods.Subsequently,the innovative strategies and optimization methods proposed by existing object detection methods were summarized,specifically addressing six challenging issues specific to UAV aerial image object detection,i.e.,image quality degradation,scale and viewpoint variation,small-object detection difficulty,complex background and occlusion,imbalance in large fields of view,and high real-time requirements.Additionally,UAV aerial image object detection datasets were consolidated and analyzed,with an evaluation of the performance of existing methods on two representative datasets.Finally,potential research directions for the future were outlined based on the unresolved issues in the field of UAV aerial image object detection,providing reference for the development and application of object detection in UAV aerial images.

unmanned aerial vehicle aerial imagedeep learningcomputer visionobject detectionmulti-scale objects

李琼、考月英、张莹、徐沛

展开 >

北京市科学技术研究院信息与人工智能技术研究所,北京 100089

中国科学院自动化研究所智能系统与工程研究中心,北京 100190

无人机航拍图像 深度学习 计算机视觉 目标检测 多尺度目标

2024

图学学报
中国图学学会

图学学报

CSTPCD北大核心
影响因子:0.73
ISSN:2095-302X
年,卷(期):2024.45(6)