首页|结合Transformer与Kolmogorov Arnold网络的分子扩增时序预测研究

结合Transformer与Kolmogorov Arnold网络的分子扩增时序预测研究

扫码查看
随着医辽诊断和治疗干预技术的不断进步,医学时间序列数据呈现指数级增长.人工智能(AI),尤其是深度学习在挖掘医学时间序列数据潜在信息方面展现出巨大潜力.为此,首次提出将 Transformer 与Kolmogorov arnold网络(KAN)相结合的方法,用于核酸扩增实验数据的预测分析.通过实验数据分析,证实模型在准确预测扩增趋势和终点值方面的有效性,终点值误差仅为 1.87,R-square系数为 0.98,且模型能准确识别不同样本类型的实验数据.进一步地,通过消融实验和超参数调优,深入探究模型各组成部分及其参数对预测性能的影响.最后,在 911 条临床数据上对 10 种深度学习模型进行泛化能力测试的结果表明,Transformer-KAN模型在预测准确性和泛化能力上均优于其他模型,不仅为改进大流行病常规诊断技术提供了新视角,还为进一步研究KAN模型及相应基础理论提供了实验佐证.
Molecular amplification time series prediction research combining Transformer with Kolmogorov-Arnold network
With the development of medical diagnosis and treatment intervention techniques,there has been an exponential growth in medical data along time series.Artificial intelligence(AI),particularly deep learning(DL),has demonstrated significant potential in uncovering medical data along time series.This study proposed,for the first time,a method that integrates the Transformer architecture with the Kolmogorov-Arnold network(KAN)to enable predictive analysis of nucleic acid amplification experimental data.Through experimental data analysis methods,the effectiveness of the model in accurately predicting amplification trends and endpoint values was validated,achieving an endpoint value error of merely 1.87 and an R-square coefficient as high as 0.98.Moreover,the model was capable of effectively identifying experimental data from different sample types.Furthermore,this research delved into the impact of the model's components and parameters on predictive performance through ablation experiments and hyperparameter tuning.Finally,a generalization capability test was conducted on 911 clinical data records provided by the Fujian Provincial Hospital across 10 deep learning models.The results demonstrated that the proposed Transformer-KAN network outperformed other models in terms of predictive accuracy and generalization capability.This study not only provided a new perspective for improving routine diagnostic techniques during pandemics but also offered empirical evidence for further research on the KAN model and its corresponding foundational theories.

deep learningtime series predictionnucleic acid amplification testKolmogorov-Arnold networkTransformer

刘灿锋、孙浩、东辉

展开 >

福州大学机械工程及自动化学院,福建 福州 350108

哈尔滨工业大学机电工程学院,黑龙江 哈尔滨 150001

深度学习 时间序列预测 核酸扩增检测技术 Kolmogorov-Arnold网络 Transformer

2024

图学学报
中国图学学会

图学学报

CSTPCD北大核心
影响因子:0.73
ISSN:2095-302X
年,卷(期):2024.45(6)