首页|电网企业代理购电风险及其策略优化研究

电网企业代理购电风险及其策略优化研究

扫码查看
为进一步推动电力市场化改革,未入市工商业用户由电网企业代理参与电力交易;然而,代理购电用户用电随机性强,在常规中长期交易中易产生较大偏差电量.对此,借鉴售电公司的中长期与现货市场协同交易模式,分析电网企业代理购电与之在决策目标和决策组成方面的差异,并建立代理购电业务的风险体系;在此基础上,提出计及代理购电特性的风险评估指标,以该项指标为目标函数,建立代理购电决策的优化模型,设计改进粒子群算法实现月度市场与日前市场购电量的快速有效分配.根据某区域工商业用户数据验证所提模型的有效性,仿真结果表明,模型通过计及代理购电特有的剩余电量可显著降低条件风险价值,且改进粒子群算法将计算时间缩短近20%.
Study on Electricity Purchasing Agent Service and Strategy Optimization of Power Grid Enterprises
To further promote the electricity market reform,the industrial and commercial users uninvolved in the electricity market participate in power trading by the agency of power grid enterprises,termed as the electricity purchasing agent service(EPAS).However,the uncertainty of the EP AS loads may result in large deviation penalty for the traditional medium and long term transactions.Therefore,this paper refers to the trading model coordinating the medium and long term and spot markets from the electricity sales companies and analyzes the differences between the EPAS and the decision-making objective functions and electricity purchasing components.Afterwards,it constructs a risk framework,and then proposes EPAS risk index.Taking the risk index as the objective function,it establishes an optimal EPAS procurement model and designs the particle swarm optimization(PSO)for rapid and effective allocation of power purchase in the monthly and day-ahead markets.According to the commercial and industrial electricity consumption of a certain region,the paper verifies the effectiveness of the proposed method.The simulation results indicate that the conditional value at risk is significantly reduced by involving residual power of EPAS,and the improved PSO decreases the calculation time by nearly 20%.

electricity purchasing agent servicerisk frameworkelectricity purchasing strategy optimizationconditional value at risk(CVaR)

陈黎军、潘熙、黄茜、江明、孙莉、王浩

展开 >

国网江苏省电力有限公司,江苏南京 210000

国网江苏省电力有限公司营销服务中心,江苏南京 210000

国网句容市供电公司,江苏镇江 212400

代理购电 风险体系 购电策略优化 条件风险价值

国网江苏省电力有限公司科技项目

3612404222339

2024

广东电力
广东电网公司电力科学研究院,广东省电机工程学会

广东电力

CSTPCD北大核心
影响因子:0.527
ISSN:1007-290X
年,卷(期):2024.37(1)
  • 23