首页|基于知识图谱的变电设备画像技术

基于知识图谱的变电设备画像技术

扫码查看
目前的电力设备状态评估方法大多根据专家经验确定权重及模型参数,并基于理想化假设建立模型,实际应用效果不佳.针对这一问题,提出基于知识图谱进行变电设备画像.首先,对监控信息、告警直传、保护信息、电网潮流、监测等多种数据和设备状态之间的关联性进行分析,提取变电设备信息;其次,对数据进行特征提取、清洗和融合;最后,使用知识图谱对变电设备构建结构化的语义库,结合图谱分类对提取到的数据进行多维度属性类别划分,分析设备特征,构建变电设备画像模型,使用模糊数学层次分析法对图谱描绘出的设备状态进行评估.实验数据表明,所提出的方法具有更高的数据清洗率和更低的故障漏检率,有助于更有效地管理电力设备.
Knowledge Graph-based Portrait Depiction Technology for Substation Equipment
Current state evaluation methods for power equipment mostly depend on expert experience determining the weights and model parameters,and the models are constructed based on idealized hypothesis,resulting in poor application effects.To solve this problem,this paper proposes knowledge graph-based substation equipment portraits.Firstly,it extracts the substation equipment information through analyzing the correlation between various data such as monitoring signals,direct transmission of alarms,protection information,grid currents,and online monitoring and the state of the equipment.Secondly,the data is extracted,cleaned and fused.Finally,the paper uses the knowledge graph to construct the structured semantic database for the substation equipment.Combining with the graph classification,it divides the extracted data into multi-dimensional attribute categories,and analyzes the characteristic of each equipment to construct a substation equipment portrait model.It also uses the fuzzy mathematics analytic hierarchy process to evaluate equipment state.The experimental data shows that the proposed method has higher data cleaning rate and lower fault leakage detection rate,which is conductive to effectively manage the power equipment.

substation equipmentportrait depictionknowledge mapmultidimensional data systemdata mining

邹国惠、魏嘉隆、王超、张勇

展开 >

南方电网广东珠海供电局,广东珠海 519000

变电设备 画像技术 知识图谱 多维数据体系 智能巡检

中国南方电网有限责任公司科技项目

030400KK52190114GDKJXM20198090

2024

广东电力
广东电网公司电力科学研究院,广东省电机工程学会

广东电力

CSTPCD北大核心
影响因子:0.527
ISSN:1007-290X
年,卷(期):2024.37(1)
  • 28