首页|基于灵敏度因子的随机电网规划方法

基于灵敏度因子的随机电网规划方法

扫码查看
针对常规电网规划考虑系统灵活性不足的问题,建立多场景的不确定电网规划模型,该模型以设备投资成本和运行费用综合最小为目标,嵌入安全约束机组组合模型以充分反映系统灵活性的平衡;同时,鉴于常规电网规划模型规模过大,计算效率低下,提出一种基于灵敏度因子的电网规划方法,建立候选线路投建状态变量对输电断面约束的灵敏度模型,消除传统电网规划中的节点相角变量,实现线路和断面潮流的解耦,从而大幅提高电网规划求解效率.IEEE 118节点算例和实际电网算例的结果表明:对新能源消纳率的过高追求可能会导致巨大电网投资成本;同时,在中大型电力系统中,基于灵敏度因子的电网规划计算效率优势明显,从而验证模型和算法的有效性.
Stochastic Power Grid Planning Using Sensitivity Factors
Inorder to solve the problem of insufficient system flexibility in the conventional power grid planning,this study establishes a stochastic power grid planning model with multiple scenarios,aiming to minimize the sum of line investment costs and operating costs.A security constraint unit commitment formulation is integrated in the model to fully reflect the balance of system flexibility.Meanwhile,considering the large scale and slow calculation of the conventional power grid planning models,the paper also proposes a power grid planning method based on sensitivity factor.It establishes the sensitivity model of variables of the candidate line construction state to the power flow of transmission section,eliminates node phase angle variables in the conventional power grid planning,so as to realize decoupling of the line and interface power flow,as well as greatly improve the computational efficiency of power grid planning.Numerical case studies utilizing IEEE 118 node system and an actual power system show that the excessive pursuit of new energy absorption rate may lead to huge power grid investment costs,and at the same time,in medium and large power systems,the calculation efficiency of grid planning based on sensitivity factor is obvious,thereby verifies the effectiveness of the proposed model and method for the power grid planning.

power grid planningsensitivity factorsecurity constrained unit commitmentstochastic optimization

易海琼、刘宏杨、王梓怡、舒隽、周宗川

展开 >

国网经济技术研究院有限公司,北京 102209

华北电力大学电气与电子工程学院,北京 100038

国网宁夏电力有限公司经济技术研究院,宁夏银川 750004

电网规划 灵敏度因子 安全约束机组组合 随机规划

国家电网有限公司总部管理科技项目

5100-202256003A-1-1-ZN

2024

广东电力
广东电网公司电力科学研究院,广东省电机工程学会

广东电力

CSTPCD北大核心
影响因子:0.527
ISSN:1007-290X
年,卷(期):2024.37(2)
  • 23