首页|基于多模态感知的变电站智能巡视技术

基于多模态感知的变电站智能巡视技术

扫码查看
针对目前变电设备识别和故障定性过程中的低效和人工依赖问题,提出一种改进的YOLOv5模型,可用于变电站设备的自动化识别和故障检测.首先,在主干网络引入ShuffleNet v2,降低模型的计算量和参数量,实现模型轻量化处理;然后,引入有效交并比损失函数,提高预测框的回归精度和收敛速度;最后,在网络中嵌入卷积块注意力模块(convolutional block attention module,CBAM),提高模型检测的准确率.在自建数据集上的实验结果显示,与其他6种模型相比,改进的YOLOv5模型在参数量、计算量和平均准确率方面均有显著优势.消融实验进一步验证了ShuffleNet v2和CBAM对提升检测精度和实时性的贡献.通过这些改进,模型的参数量较原YOLOv5模型减少了5.26 Mibit,计算量减少了10.3 Gibit,平均准确率提升了4%,展现了其在变电设备智能巡视领域的应用潜力.
Intelligent Inspection Technology for Substations Based on Multimodal Sensing
To tackle the inefficiencies and reliance on manual labor in the identification and qualitative fault detection of substation equipment,this paper proposes an enhanced YOLOv5 model for the automated recognition and fault detection of substation devices.It firstly introduces ShuffleNet v2 into the backbone network to reduce the computational complexity and parameters so as to facilitate lightweight processing.Subsequently,it introduces the efficient intersection over union(EIOU)loss function to refine the regression accuracy and expedite the convergence of predicted bounding boxes.Finally,a convolutional block attention module(CBAM)is embedded within the network to improve the model's detection accuracy.Comparative experiments conducted on a custom dataset show that the improved YOLOv5 model outperforms six other models in terms of parameter volume,computational amount,and average accuracy.The ablation studies further verify the contributions of ShuffleNet v2 and the CBAM module in enhancing detection precision and real-time performance.These enhancements lead to a reduction of 5.26 Mibit in parameters and 10.3 Gibit decrease in computational amount compared to the original YOLOv5 model,along with a 4%increase in average accuracy,indicating the model's potential for application in the intelligent inspection of substation equipment.

substation equipmentYOLOv5ShuffleNetconvolutional block attention module(CBAM)efficient intersection over union(EIOU)

吴碧海、王超、魏嘉隆、裴星宇

展开 >

南方电网广东珠海供电局,广东 珠海 519000

变电设备 YOLOv5 ShuffleNet 卷积块注意力模块 有效交并比

中国南方电网有限责任公司科技项目

030400KK52190114GDKJXM20198090

2024

广东电力
广东电网公司电力科学研究院,广东省电机工程学会

广东电力

CSTPCD北大核心
影响因子:0.527
ISSN:1007-290X
年,卷(期):2024.37(3)
  • 34