首页|基于数学形态学和沃尔什变换的配电网高阻接地故障检测

基于数学形态学和沃尔什变换的配电网高阻接地故障检测

扫码查看
配电网中高阻接地故障(high impedance grounding fault,HIGF)时常发生,故障一维零序电流信号特征模糊、微弱,极易与励磁涌流、电容器投切信号混淆.为此,提出一种基于相空间重构、数学形态学(mathematical morphology,MM)-沃尔什变换(Walsh transform,WT)的HIGF识别方法.首先,使用联合参数选取算法确定延迟时间和嵌入维数,利用坐标重构法对仿真零序电流信号进行相空间重构,获得重构轨迹图,以发掘在一维空间无法观测到的特征;然后,使用MM对重构图像进行去噪以及边缘特征提取;接着,采用MM-WT算法提取重构图像特征;最后,计算提取的图像特征的脉冲因子和对称因子,实现对HIGF和其他扰动事件的识别.在PSCAD/EMTDC和RSCAD/RTDS上进行仿真实验,结果验证了所提算法的可靠性和可行性.
High Impedance Grounding Fault Detection for Distribution Network Based on Mathematical Morphology and Walsh Transform
The high impedance grounding fault(HIGF)often occurs in the distribution network.Because the characteristics of the one-dimensional zero sequence current signal of the fault are vague and weak,it is easy to be confused with inrush current(IC)and capacitor switching(CS).Therefore,this paper proposes an algorithm based on phase space reconstruction(PSR),mathematical morphology(MM)and Walsh transform(WT)to realize the recognition of HIGF.Firstly,the paper uses the joint parameter selection algorithm to determine the delay time and embedding dimension,and the coordinate reconstruction method to reconstruct the phase space of the simulated zero sequence current signal to obtain the reconstructed trajectory map,so as to explore the characteristics that can't be observed in one-dimensional space.Then,it uses MM to denoise the reconstructed images and extract the edge features.Then,the paper adopts a fusion MM and WT algorithm to extract the reconstructed image features.Finally,the recognition of HIGF and other disturbance events is realized by calculating the pulse factor and symmetry factor of the extracted image features.The feasibility of the algorithm is further verified by simulation on the platform RSCAD/RTDS.

distribution networkhigh impedance grounding faultphase space reconstructionmathematical morphologyWalsh transform

梅广、季天瑶、陈嘉伟、丁志

展开 >

华南理工大学 电力学院,广东 广州 510641

配电网 高阻接地故障 相空间重构 数学形态学 沃尔什变换

国家自然科学基金

52077081

2024

广东电力
广东电网公司电力科学研究院,广东省电机工程学会

广东电力

CSTPCD北大核心
影响因子:0.527
ISSN:1007-290X
年,卷(期):2024.37(4)
  • 18