首页|基于双分辨率S变换和改进的多尺度ResNet模型的电能质量扰动检测方法

基于双分辨率S变换和改进的多尺度ResNet模型的电能质量扰动检测方法

扫码查看
准确的电能质量扰动检测对改善智能电网中电能质量问题、保证电网安全可靠运行具有重要意义.对此,提出一种基于双分辨率S变换和改进的多尺度ResNet模型的电能质量扰动信号的检测方法.首先,利用双分辨率S变换准确提取电能质量扰动信号的时频特征向量;其次,提出利用Mish函数代替传统ReLU激活函数来改进ResNet,再利用不同卷积核大小的改进ResNet模型对复杂电能质量扰动信号进行特征学习与扰动分类;然后,在不增加网络参数的情况下,提出利用轻量级通道注意力(efficient channel attention,ECA)对电能质量扰动检测分类结果影响较大的重要特征分配更大的权重值,提升模型的分类性能.最后,实验结果表明,与其他电能质量扰动检测方法相比,所提方法具有更高的准确率和抗噪性.
Detection Method of Power Quality Disturbances Based on Double Resolution S Transform and Improved Multi-scale ResNet
Accurate power quality disturbance detection is significant for improving power quality problems in smart grids and ensuring safe and reliable operation.Therefore,this paper proposes a detection method of power quality disturbance signals based on double-resolution S transform(DRST)and improved multi-scale ResNet.Firstly,the power quality disturbance signal feature vectors are extracted accurately and quickly using the DRST.Secondly,it proposes to use Mish function to improve ResNet instead of the traditional ReLU activation function,and then the improved ResNet with different convolution kernel sizes is utilized for feature learning and classification of complex power quality disturbance signals.Without increasing the network parameters,the paper proposes to use the lightweight efficient channel attention(efficient channel attention,ECA)to assign larger weight values to the important features that have a greater impact on the classification results of power quality disturbance detection.The experimental results show that the proposed method has higher accuracy and better noise immunity compared with other power quality disturbance detection methods.

double resolution S transformpower quality disturbanceresidual network(ResNet)attention mechanismactive function

覃日升、徐志、况华、姜訸、奚鑫泽、任敏

展开 >

云南电网有限责任公司电力科学研究院,云南昆明 650217

云南电网有限责任公司,云南昆明 650217

双分辨率S变换 电能质量扰动 残差网络 注意力机制 激活函数

国家重点研发计划项目

2019YFE0118000

2024

广东电力
广东电网公司电力科学研究院,广东省电机工程学会

广东电力

CSTPCD北大核心
影响因子:0.527
ISSN:1007-290X
年,卷(期):2024.37(7)
  • 16