首页|基于DGA和改进SMOTE的小样本变压器故障诊断方法

基于DGA和改进SMOTE的小样本变压器故障诊断方法

扫码查看
电力变压器故障诊断方法受样本数量和数据质量问题影响显著,现有小样本学习方法由于合成样本质量不高,往往无法实际应用,进而导致智能诊断算法难以在数据少的情况下实现对变压器的诊断.为了解决传统过采样算法合成样本质量不足导致无法实现准确的故障诊断的问题,提出一种基于改进合成少数过采样技术和深度学习的变压器故障诊断模型.首先,通过合成少数过采样技术(synthetic minority oversampling technique,SMOTE)对训练集进行数据扩充;其次,基于余弦相似度实现合成样本优选,增强合成样本质量;最后,通过卷积神经网络模型对测试集进行分类预测.在某变电站实测数据下进行分析和验证,并与传统的方法进行对比.结果表明,所提方法提高了故障诊断的精度.
Small Sample Transformer Fault Diagnosis Method Based on DGA and Enhanced SMOTE
The transformer diagnosis methods are affected obviously by sample numbers and data quality.Moreover,the current synthesized sample quality of traditional small sample learning can't meet the requirements for actual applications,causing difficulty in transformer diagnosis with few data by intelligent diagnosis algorithms.To solve these above problems,this paper proposes a transformer diagnosis model based on enhanced synthetic minority oversampling technique(SMOTE)and deep learning.Firstly,this method uses SMOTE to augment the training set.Secondly,based on cosine similarity,an optimum selecting method of the synthesized samples to enhance the quality.Thirdly,a convolutional neural network model is used for classification prediction.The paper uses measured data to conduct analysis and validation,and compare the proposed model with traditional methods.The results indicate that the proposed method has improved the performance of fault diagnosis.

transformerfault diagnosissynthetic sample preferenceoversamplingdeep learning

邹德旭、徐赫、权浩、尹建华、周涛、彭庆军、王山、代维菊、洪志湖

展开 >

重庆大学电气工程学院,重庆 400044

南方电网云南电网有限责任公司电力科学研究院,云南昆明 650217

南京理工大学自动化学院,江苏南京 210094

变压器 故障诊断 合成样本优选 过采样 深度学习

国家自然科学基金项目云南电网有限责任公司科技项目

51907090YNKJXM20220009

2024

广东电力
广东电网公司电力科学研究院,广东省电机工程学会

广东电力

CSTPCD北大核心
影响因子:0.527
ISSN:1007-290X
年,卷(期):2024.37(7)
  • 9