首页|面向源-荷一体化布局的负荷侧资源响应潜力感知方法

面向源-荷一体化布局的负荷侧资源响应潜力感知方法

扫码查看
针对源 荷一体化布局下光伏出力波动带来的不确定性与用户负荷不确定性叠加造成的需求响应资源评估困难的问题,提出一种考虑分布式光伏出力与负荷波动耦合性的负荷侧资源响应潜力感知方法.首先,基于光伏发电机理预测模型分离出光伏出力曲线中的低频分量;其次,以分离后的光伏出力与用户原负荷数据为输入,构建融合时域卷积与上下限区间估计网络的负荷侧资源响应潜力感知模型,获取考虑光伏出力影响的负荷响应容量高可靠性评估区间;最后,根据分布式光伏出力与用户负荷数据构建仿真分析算例.结果表明,在高渗透率分布式光伏场景下,相对于常规预测方法,所提方法采用光 负分离法可降低负荷特性学习难度,同时,通过构建不同膨胀率的多时域卷积分支,可有效解决区域内用户用电变化周期不一致的问题,提高对区间覆盖率等指标的预测精度,改善负荷响应容量评估的精度与可靠性.
Load Response Resource Potential Assessment Method for Source-load Integration System Layout
To solve the problem of difficulty in evaluating demand response resources caused by the uncertainty of photovoltaic(PV)output fluctuations and the superposition of user load uncertainty under the integrated layout of source load,this paper proposes a load-side resource response potential estimation method that takes into account the coupling between distributed PV generation and load fluctuation.Firstly,based on a rational prediction model for PV generators,the low frequency components of the PV power generation curve are separated from the user net load curve.Secondly,the separated PV output and user original load data are taken as inputs to construct a load response resource evaluation model based on time-domain convolution and upper and lower interval estimation,achieving reliable interval evaluation for load response capacity.Finally,a simulation analysis case is constructed based on real distributed PV and customer load data.The results show that the proposed method reduces the difficulty of learning load characteristics by means of the PV-load separation method compared with other conventional prediction methods.At the same time,it constructs multi temporal convolution branches with different dilation rates,effectively solving the problem of inconsistent user electricity consumption cycles in the region.The prediction results have been significantly improved in indicators such as interval coverage,improving the accuracy and reliability of load response capacity evaluation.

distributed behind-the-meterload response resource assessmenttemporal convolutional networklower upper bond estimation

段梅梅、程含渺、方凯杰、黄艺璇、周承翰

展开 >

国网江苏省电力有限公司营销服务中心,江苏 南京 210019

分布式表后光伏 负荷侧资源响应潜力感知 时域卷积 上下限区间估计

2024

广东电力
广东电网公司电力科学研究院,广东省电机工程学会

广东电力

CSTPCD北大核心
影响因子:0.527
ISSN:1007-290X
年,卷(期):2024.37(11)