首页|多尺度特征交互的伪标签无监督域自适应行人重识别

多尺度特征交互的伪标签无监督域自适应行人重识别

扫码查看
针对无监督域自适应行人重识别中存在的感受野不足、全局特征与局部特征联系不紧密等问题,提出了一种多尺度特征交互的无监督域自适应行人重识别方法.首先利用特征压缩注意力机制对图像特征进行压缩并输入到网络以增强丰富的局部信息.其次,设计了残差特征交互模块,通过特征交互的方式将全局信息编码到特征中,同时增大模型感受野,强化网络对行人特征信息的提取能力.最后,采用基于部分卷积的瓶颈层模块在部分输入通道上进行卷积运算以减少冗余计算,提高空间特征提取效率.实验结果显示,该方法在三个适应性数据集上mAP分别达到了82.9%、68.7%、26.6%,Rank-1分别达到了93.7%、82.7%、54.7%,Rank-5分别达到了97.4%、89.9%、67.5%.表明所提方法能够使行人特征得到更好的表达,识别精度得到提高.
Multi-scale feature interaction pseudo-label unsupervised domain adaptation for person re-identification
To address issues of insufficient receptive fields and weak connections between global and local features in unsupervised domain adaptive person re-identification,a multi-scale feature interaction method was proposed.Firstly,the feature squeeze attention mechanism compressed image features,which were then fed into the network to enhance rich local information representation.Secondly,the residual feature interaction module encoded global information into the features by interaction,while increasing the model's receptive field and enhancing its ability to extract pedestrian features.Finally,a bottleneck module based on partial convolution conducted convolution operations on the part of the input channels,reducing redundant computations and improving spatial feature extraction efficiency.Experimental results on three adaptation datasets demonstrate that the method mAP reached 82.9%,68.7%,and 26.6%,the Rank-1 reached 93.7%,82.7%,and 54.7%,the Rank-5 reached 97.4%,89.9%,and 67.5%,by comparison with baseline,respectively,demonstrating that the proposed method allows for better pedestrian features representation and improved recognition accuracy.

person re-identificationunsupervised domain adaptivefeature squeezemulti-scale feature interactionpartial convolution

刘仲民、杨富君、胡文瑾

展开 >

兰州理工大学电气工程与信息工程学院,甘肃 兰州 730050

西北民族大学数学与计算机科学学院,甘肃 兰州 730030

行人重识别 无监督域自适应 特征压缩 多尺度特征交互 部分卷积

2025

光电工程
中国科学院光电技术研究所 中国光学学会

光电工程

北大核心
影响因子:0.65
ISSN:1003-501X
年,卷(期):2025.52(1)