首页|基于切片关联信息的慢性阻塞性肺疾病CT诊断

基于切片关联信息的慢性阻塞性肺疾病CT诊断

扫码查看
慢性阻塞性肺疾病(Chronic Obstructive Pulmonary Disease,COPD)是一种常见的全球呼吸系统疾病,需要耗费医生大量的时间和精力对CT图像进行初步评估诊断.为了提高阅片效率,提出一种基于CT图像切片关联信息的深度网络,辅助诊断慢性阻塞性肺疾病.提出一种分组方式将网络分成若干个网络分支,每个网络分支能够提取局部CT图像切片内部关联信息,结合双向LSTM技术整合各网络分支信息以提取CT图像全局切片关联信息.为了进一步提升网络分支的局部特征提取能力,融入ConvNeXt提出增强的多头卷积注意力模块.对比实验结果表明,所提出的深度网络能够更好地对CT图像进行分类,辅助COPD诊断,其准确率达到92.15%,敏感度达到94.17%,特异性达到91.17%,AUC达到95.33%.
CT Diagnosis of Chronic Obstructive Pulmonary Disease Based on Slice Correlation Information
Chronic obstructive pulmonary disease(COPD)is a common respiratory disease of the world,and the doctors need a lot of time to read the abdominal CT images for COPD pre-evaluation.To improve the pre-evaluation efficiency,a deep network based on slice correlation information was proposed for COPD auxiliary diagnosis.First,by using a grouping approach,the architecture of the deep network is divided into several network branches,each of which aims to extract the local intra-slice association information of the CT images.Then,the outputs from multiple network branches are integrated via a BiLSTM to extract the global inter-slice association information between the adjacent CT slices.To further improve the ability of local feature extraction for each network branch,the enhanced multi-headed convolutional attention is designed by embedding the ConvNeXt into the existing multi-headed convolutional attention.Experimental results show that the proposed deep network achieves promising effectiveness for CT image classification on auiliarily diagnose of COPD,and the accuracy,sensitivity,specificity and AUC of the proposed network reach to approximately 92.15%,94.17%,91.17%and 95.33%,respectively.

chronic obstructive pulmonary disease(COPD)deep learningmulti-head convolutional attention

梁宇辰、蔡念、欧阳文生、谢依颖、王平

展开 >

广东工业大学 信息工程学院, 广东 广州 510006

广州医科大学附属第一医院 肝胆外科, 广东 广州 510120

慢性阻塞性肺疾病 深度学习 多头卷积注意力

国家自然科学基金资助项目广州市科技计划项目

82172019202102010251

2024

广东工业大学学报
广东工业大学

广东工业大学学报

影响因子:0.628
ISSN:1007-7162
年,卷(期):2024.41(1)
  • 1