首页|基于最小二乘孪生支持向量机的不确定数据学习算法

基于最小二乘孪生支持向量机的不确定数据学习算法

扫码查看
孪生支持向量机通过计算2个二次规划问题,得到2个不平行的超平面,用于解决二分类问题.然而在实际的应用中,数据通常包含不确定信息,这将会对构建模型带来困难.对此,提出了一种用于求解带有不确定数据的最小二乘孪生支持向量机模型.首先,对于每个实例,该方法都分配一个噪声向量来构建噪声信息.其次,将噪声向量结合到最小二乘孪生支持向量机,并在训练阶段得到优化.最后,采用一个2步循环迭代的启发式框架求解得到分类器和更新噪声向量.实验表明,跟其他对比方法比较,本方法采用噪声向量对不确定信息进行建模,并将孪生支持向量机的二次规划问题转化为线性方程,具有更好的分类精度和更高的训练效率.
A Least Squares Twin Support Vector Machine Method with Uncertain Data
Twin support vector machine learns two nonparallel hyperplanes by calculating two quadratic programming problems to solve the binary classification problems.However,in practical applications,the data usually contain uncertain information,making it difficult to construct the classification model.This paper proposed a new and efficient uncertain-data-based least squares twin support vector machine(ULSTSVM)method to address the problem of data uncertainty.Firstly,since the data may contain uncertain information,a noise vector was introduced to model the uncertain information of each example.Secondly,the noise vectors were incorporated into the least squares TWSVM.Finally,to solve the derived learning problem,we employed a two-step heuristic framework to train the least squares TWSVM classifier and updated the noise vectors alternatively.The experiments showed that our proposed ULSTSVM outperforms the baselines in training time and meanwhile achieves comparable classification accuracy.In sum,ULSTSVM adopts a noise vector to model the uncertain information and transforms the quadratic programming problems of TWSVM into linear equations,such that better classification accuracy and higher training efficiency can be obtained.

least squarestwin support vector machinenonparallel plane learningdata uncertaintyclassification

刘锦能、肖燕珊、刘波

展开 >

广东工业大学 计算机学院, 广东 广州 510006

广东工业大学 自动化学院, 广东 广州 510006

最小二乘 孪生支持向量机 不平行平面学习 数据不确定性 分类

国家自然科学基金资助项目

62076074

2024

广东工业大学学报
广东工业大学

广东工业大学学报

影响因子:0.628
ISSN:1007-7162
年,卷(期):2024.41(1)
  • 22