首页|基于局部正交特征融合的小样本图像分类

基于局部正交特征融合的小样本图像分类

扫码查看
针对目前基于度量学习的小样本图像分类方法中难以充分提取重要特征问题,提出一种基于局部正交特征融合的小样本图像分类方法.首先,利用特征提取网络同时提取局部细节丰富的浅层特征和语义化强的深层特征;然后,通过一个通道注意力模块和一个多尺度特征自适应融合模块分别在浅层特征的通道维度和空间尺度上进行特征增强,以生成更显著且包含更多尺度信息的局部特征.最后,通过一个局部正交特征融合模块对得到的多尺度局部特征和初始深层语义特征进行局部正交特征提取和注意力融合,以充分利用图像的局部和全局特征信息,生成更能代表目标类别的特征表示.在miniImageNet、tieredImageNet和CUB-200-2011三个公开数据集上的实验结果表明:提出的方法可以获得更好的分类效果,在5way-5shot任务上的准确率分别达到81.69%、85.36%和89.78%,与baseline模型相比,分类准确率分别提升5.23%、3.19%和5.99%.
Local Orthogonal Feature Fusion for Few-Shot Image Classification
How to extract important features by existing metric-based few-shot image classification models is a difficulty.A few-shot image classification method based on local orthogonal feature fusion is proposed.First,the feature extraction network is used to simultaneously extract shallow features with rich local details and deep features with strong semantics.Then,a channel attention module and a multi-scale feature adaptive fusion module are used to perform feature enhancement on the channel and scale dimensions of the shallow features,respectively,in order to generate the feature with more salient local features and more scale information.Finally,according to local orthogonal feature extraction and attention fusion,the obtained multi-scale local features and initial deep semantic features are extracted and fused by a local orthogonal feature fusion module.In this way,we can make full use of the local and global feature information of the image.And a feature representation is generated,which can be more representative of the target category.The experimental results on the three public datasets of miniImageNet,tieredImageNet and CUB-200-2011 show that the proposed method can achieve better classification results.The accuracy rate of the proposed method on the 5way-5shot task reaches 81.69%,85.36%and 89.78%respectively.Compared with the baseline model,the classification accuracy increased by 5.23%,3.19%and 5.99%respectively.

image classificationfew-shot learningmulti-scale featuresattention mechanismfeature fusion

涂泽良、程良伦、黄国恒

展开 >

广东工业大学 计算机学院 广东 广州 510006

图像分类 小样本学习 多尺度特征 注意力机制 特征融合

广东省重点领域研发计划

2019B010153002

2024

广东工业大学学报
广东工业大学

广东工业大学学报

影响因子:0.628
ISSN:1007-7162
年,卷(期):2024.41(2)
  • 34