首页|基于红外可见光融合的复杂环境下人脸识别方法

基于红外可见光融合的复杂环境下人脸识别方法

扫码查看
随着深度学习方法的发展,理想环境下基于可见光的人脸识别精度和速度已经达到优秀的水平.但是在弱光等复杂环境下,由于缺少光源,可见光图像无法体现人脸细节,导致人脸识别效果下降甚至失效.为了解决这一问题,提出一种基于红外可见光融合的复杂环境下人脸识别方法.首先,针对低照度环境提出联合CNN(Convolutional Neural Network)和Transformer的红外与可见光融合识别网络,并联CNN和视觉Transformer组成单模态特征融合模块,充分利用源图像的局部细节信息和全局上下文信息.同时,提出一种基于模态平均差异度的多模态特征融合策略,强化对源图像不同区域特征的差异化表达.其次,针对实际应用中融合识别网络模型大、速度慢的问题提出轻量化人脸识别网络MobileFaceNet-Coo和基于边云协同的自适应识别策略,通过图像质量选择识别模型,有效利用硬件资源.实验结果表明,弱光条件下,融合红外光与仅使用可见光图像相比,识别率提升了13.96个百分点.同时,将本方法应用实际项目中,结果表明:本方法在复杂环境下,能提高人脸识别的实时性和准确率.
Face Recognition Method in Complex Environment Based on Infrared Visible Fusion
With the development of deep learning methods,the accuracy and speed of face recognition based on visible light in ideal environments have reached an excellent level.However,in complex environments such as low light,the lack of a light source keeps visible images from reflecting face details,resulting in reduced or even invalid face recognition.Aiming at the problems in this issue,a face recognition method in complex environments based on infrared-visible light fusion is proposed.Firstly,an infrared and visible fusion recognition network combining CNN and Transformer is introduced,specifically designed for low illumination environments.This network combines CNN and visual Transformer in parallel to form a single-mode feature fusion module,which is utilized to effectively utilize local details and global context information from the source image.Additionally,a multimodal feature fusion strategy based on the average difference of modes is proposed to enhance the distinctive expression of different regional features in the source image.Secondly,a lightweight face recognition network MobileFaceNet-Coo and an adaptive recognition strategy based on edge-cloud collaboration are proposed in order to solve the problem of large and slow fusion recognition network models in practical applications.This strategy selects the recognition model through image quality and effectively utilizes hardware resources.Experimental results demonstrate that the recognition rate of fused infrared light is 13.96 percentage point higher than that of visible light alone.Real-world project result shows that this method significantly improves real-time and accuracy of face recognition in complex environments.

face recognitionimage fusionlow illuminationTransformer

冯广、鲍龙

展开 >

广东工业大学 自动化学院,广东 广州 510006

广东工业大学 计算机学院,广东 广州 510006

人脸识别 图像融合 低照度 Transformer

国家自然科学基金广东省哲学社会科学基金

62237001GD23YJY08

2024

广东工业大学学报
广东工业大学

广东工业大学学报

影响因子:0.628
ISSN:1007-7162
年,卷(期):2024.41(3)
  • 24