首页|基于多智能体注意力机制的自动巡检路线强化学习模型

基于多智能体注意力机制的自动巡检路线强化学习模型

扫码查看
合理的任务分配与巡检路线规划是确保机器人能够高效替代工程师完成变电站危险区域巡检任务的关键所在.然而,以往的研究大多局限于为变电设备规划固定的最短巡检路径,却鲜少考虑到设备检测时间和检验等级的差异性.为了进一步提升变电站巡检的有效性和灵活性,本文在充分考虑检测时间、设备检验等级以及待检测设备数量差异性的基础上,构建了一个动态巡检路径规划模型.鉴于所建模型属于NP-hard问题,提出了一种基于强化学习和多智能体注意力机制的求解策略.在求解过程中,先利用具有注意力层的编码器-解码器框架生成巡检路径,随后通过无监督神经网络进行训练优化.最后,以南方电网某变电站作为实验点进行模型验证.与遗传算法、分层可变领域搜索算法和自适应并行蚁群算法相比,本文提出的算法在路径距离上分别缩短了3.31%,1.24%与1.73%,规划用时分别缩短了17.06%,16.22%与13.89%,单次巡检成本分别降低了21.22%,6.86%与9.14%,展现出显著的优越性.
Reinforcement Learning Model for Automatic Inspection Route Based on Multi-agent Attention Mechanism
Reasonable task allocation and inspection routes are crucial for robots to replace engineers in performing inspection tasks in dangerous areas of substations.However,most existing studies focused solely on planning fixed shortest paths for inspecting power transformation equipment,neglecting the variability of equipment inspection times and the heterogeneity of inspection levels.To enhance the effectiveness and flexibility of substation inspections,this study establishes a dynamic inspection path planning model by comprehensively considering the variability of inspection times,the heterogeneity of equipment inspection levels,and the number differences equipments to be inspected.To address the NP-hard of the proposed model,this paper proposes a solution based on the reinforcement learning and multi-agent attention mechanism,which first generates inspection paths using an encoder-decoder framework with an attention layer,and then trains it using an unsupervised neural network.Finally,a substation of China Southern Power Grid is used as an experimental site to validate the model.Compared with the genetic algorithm(GA),Hierarchical Variable Neighborhood Search algorithm(HVNS),and Adaptive Parallel Memetic Multi-Elite Ant System algorithm(APMMEAS),the proposed algorithm reduces the path distances by 3.31%,1.24%,and 1.73%,respectively;reduces the planning time by 17.06%,16.22%and 13.89%,respectively;and reduces the single inspection costs by 21.22%,6.86%,and 9.14%,respectively.

multi-agentpower substationpath planningreinforcement learningattention mechanism

欧嘉俊、曾伟良、李谕锋、范竞敏

展开 >

广东工业大学 自动化学院,广东 广州 510006

多智能体 变电站 路径规划 强化学习 注意力机制

国家自然科学基金资助项目国家自然科学基金资助项目广东省基础与应用基础研究基金资助项目

62273102620730842024A1515010629

2024

广东工业大学学报
广东工业大学

广东工业大学学报

影响因子:0.628
ISSN:1007-7162
年,卷(期):2024.41(5)