首页|基于主动学习和视觉状态空间模型的热点检测器

基于主动学习和视觉状态空间模型的热点检测器

扫码查看
物理验证是芯片生产制造中的关键问题,可保证芯片良率.在实际制造前检测芯片版图中的潜在热点是物理验证的重要步骤,确保制造可行性,提高生产效率.传统的热点检测技术具有检测周期长、消耗大量计算资源等问题,不仅增加了整个生产周期的时间成本,而且检测到的热点模式有限.基于主动学习技术和视觉状态空间模型,本文提出一种新的热点检测模型,使用记忆性评估查询的采样策略,缓解热点数据和非热点数据不平衡问题对模型的影响;同时对基于卷积神经网络(Convolutional Neural Network,CNN)结构的分辨率受限以及基于视觉转换器(Vision Transformers,ViT)网络架构的二次复杂度进行优化,实现热点检测器的线性复杂度.使用ICCAD-2012竞赛数据进行测试,表明本文提出的热点检测器能够显著减少误报率,当召回率高达98.89%时,误报率仅为1.47%.
A Hotspot Detector Based on Active Learning and Visual State Space Models
Physical verification is a critical concern in chip manufacturing,ensuring chip yield.Detecting potential hotspots in the chip layout before actual manufacturing is a critical step,which ensures manufacturing feasibility and enhances production efficiency.Traditional hotspot detection techniques suffer from long detection cycles and high computational resource consumption,resulting in increased time costs throughout the production cycle and limited detection of hotspot patterns.Based on active learning techniques and visual state space models,this paper proposes a new hotspot detection model.A memory-based sampling strategy is employed for query evaluation to mitigate the impact of the imbalance between hotspot and non-hotspot data on the model.Furthermore,the resolution constraints of the CNN structure and the secondary complexity of the ViT network architecture are optimized,leading to linear complexity for the hotspot detector.Testing results on the ICCAD-2012 competition dataset show that the proposed hotspot detector significantly reduces the false positive rate,achieving a rate of only 1.47%,while the recall reaches an impressive 98.89%.

hotspot detectiondeep learningvisual state space modelactive learning

王盈、蔡述庭、熊晓明

展开 >

广东工业大学 计算机学院,广东 广州 510006

广东工业大学 集成电路学院,广东 广州 510006

热点检测 深度学习 视觉状态空间模型 主动学习

2024

广东工业大学学报
广东工业大学

广东工业大学学报

影响因子:0.628
ISSN:1007-7162
年,卷(期):2024.41(6)