首页|基于方向约束强化学习的左心室内膜分割

基于方向约束强化学习的左心室内膜分割

扫码查看
从心脏核磁共振成像中准确分割左心室内膜,进而得到左心室区域,是对心脏功能进行分析的重要步骤.针对强化学习通过定位左心室内膜边缘来进行分割时容易出现定位偏差而导致分割效果下降的问题,本文提出一种基于方向约束强化学习的左心室内膜分割方法.方法将分割任务划分为两个阶段:在第一阶段提取内膜的全局边缘特征;在第二阶段利用强化学习迭代定位内膜边缘点得到边缘,从而分割出左心室内膜.方法对智能体的定位方向进行约束,能减少定位偏差和重叠的情况从而提高分割精度.最后,在两个公共数据集自动心脏诊断挑战(Automatic Cardiac Diagnosis Challenge,ACDC)和Sunnybrook心脏MR左心室分割挑战(Sunnybrook Cardiac MR Left Ventricle Segmentation Challenge,Sunnybrook)上的实验结果显示:与其他方法相比,本文方法精度较高,其F1-score指标分别为0.9482、0.9387,平均垂直距离(Average Perpendicular Distance,APD)分别为3.5863、4.9447,能有效地分割左心室内膜.
Segmentation of Left Ventricular Endocardium Using Direction-constrained Reinforcement Learning
Accurate segmentation of the left ventricular endocardium from cardiac magnetic resonance imaging to obtain the left ventricular region is an important step in the analysis of cardiac function.It is noted that reinforcement learning is prone to localization deviation in left ventricular endocardium segmentation by locating the left ventricular endocardial edges,leading to a performance decrease in the segmentation.To address this,this paper proposes a direction-constrained reinforcement learning method for left ventricular endocardium segmentation,which divides the segmentation task into two stages.In the first stage,the proposed method extracts global edge features of the endocardium,and in the second stage,reinforcement learning is used to iteratively locate the endocardial edge points to obtain the edge,obtaining the segmented left ventricular endocardium.The proposed method constrains the direction of agent positioning,which can reduce the localization deviation and overlap,such that the segmentation accuracy can be improved.Finally,the experimental results on two public datasets,including the Automated Cardiac Diagnosis Challenge(ACDC)and Sunnybrook Cardiac MR Left Ventricle Segmentation Challenge(Sunnybrook),show that the proposed method has higher accuracy than the compared methods.Specifically,the F1-score of the proposed method are 0.9482 and 0.9387,and the Average perpendicular distance(APD)are 3.5863 and 4.9447,which can effectively segment the left ventricular endocardium.

image segmentationtransformerdeep reinforcement learningedge localization

曾安、庞耀幸、潘丹、赵靖亮

展开 >

广东工业大学 计算机学院,广东 广州 510006

广东技术师范大学 电子与信息学院,广东 广州 510665

图像分割 变换器 深度强化学习 边缘定位

2024

广东工业大学学报
广东工业大学

广东工业大学学报

影响因子:0.628
ISSN:1007-7162
年,卷(期):2024.41(6)