首页|基于因子级特征与属性偏好联合学习的会话推荐

基于因子级特征与属性偏好联合学习的会话推荐

扫码查看
针对序列短、数据稀疏、难以泛化导致的会话推荐准确率不高问题,提出了因子级特征与属性偏好联合学习的会话推荐模型.模型首先通过构建全局级会话项目依赖感知图,学习用户全局级会话项目嵌入;然后,应用解纠缠表示学习方法将会话中的项目分解为多个相对独立的因子级特征,学习用户因子级兴趣偏好;接着利用情境化自注意图神经网络捕获用户针对会话项目属性的偏好;最后,将因子级兴趣偏好与项目属性偏好联合学习,得到用户最终兴趣偏好表示,并最终完成会话推荐.在Diginetica、Cosmetics两个公开数据集上的多个实验表明,本文模型优于对比的基线模型,验证了本文模型的良好推荐性能和设计合理性.
Factor-level Feature and Attribute Preference Joint Learning Based Session Recommendation
A factor-level feature and attribute preference joint learning session-based recommendation model is proposed to address the problem of low recommendation accuracy caused by short sequences,sparse data,and difficulty in generalization.The model first learns user global-level session item embeddings by constructing a global level session item dependency perception graph.Then,using the method of disentanglement representation learning,the items in the conversation are decomposed into multiple relatively independent factor-level features to learn user factor-level interest preferences.Then,using contextualized self-attention graph neural networks,user preferences for session item attributes are captured.Finally,factor-level interest preferences and the project attribute preferences are jointly learned to obtain the user's final interest preferences,which in turn completes the session recommendation.Multiple experiments on two publicly available datasets,Diginetica and Cosmetics,have shown that our model outperforms the baseline model in comparison,verifying the recommendation performance and design rationality of our model.

session-based recommendationfactor-level featuredisentangled representation learningglobal-level item dependencygraph neural network

林浩、陈平华

展开 >

广东工业大学 计算机学院,广东 广州 510006

会话推荐 因子级特征 解纠缠表示 全局项目依赖 图神经网络

2024

广东工业大学学报
广东工业大学

广东工业大学学报

影响因子:0.628
ISSN:1007-7162
年,卷(期):2024.41(6)