首页|引入栅格连续性约束的单光子激光雷达点云信号提取

引入栅格连续性约束的单光子激光雷达点云信号提取

扫码查看
以ICESat-2/ATLAS为代表的单光子激光雷达具有观测灵敏度高、背景噪声大的特点,需要合适的滤波方法去除噪声点.本文基于点云密度去噪原理,提出了一种自适应光子点云信号提取方法.该方法首先根据地表地形对点云进行栅格划分,以栅格为单元对点云进行连续性检验,实现点云粗滤波;利用K均值聚类算法和布料模拟滤波完成点云精细分类和光子高程点提取.对ATL03光子点云实验结果表明,本文方法对于不同地形变化的点云数据均可取得良好的处理效果,信号点召回率(Recall)、精确率(Precision)及F值分别达到99.0%、99.9%、99.5%.基于参考点云的配准实验结果表明,3组光子高程点的高程中误差分别为0.960、0.957、0.872 m,优于官方提供的ATL08对照组.
A Grid-Continuity-Constraint Method for Extracting Single-Photon Lidar Point Cloud
The existing single-photon LiDAR,such as ICESat-2/ATLAS,are with high observation sensitivity and significant background noise,which usually require effective filtering methods for removing noise.This paper proposes an improved adaptive photon point cloud signal extraction method based on the principle of point cloud density denoising.The proposed method first adaptively determines grid width and height according to the point cloud distribution characteristics to partition point cloud data into grids.Then,it conducts grid continuity tests as units for point cloud filtering.Finally,it employs K-means clustering and cloth simulation filter algorithms to accurately extract reliable vertical control points.Experimental results on ATL03 photon point clouds show that the proposed method achieves promising effectiveness for point cloud data with different terrain variations by achieving approximately 99.0%,99.9%,and 99.5%in terms of signal point recall rate(Recall),precision rate(Precision),and F-measure,respectively.From the registration experimental results with reference point clouds,the elevation errors of photon elevation points are 0.960 m,0.957 m,and 0.872 m,respectively,outperforming the official ATL08 control group provided by the authorities.

single-photon lidarICESat-2point densityK-means clusteringCSF(Cloth Simulaton Filter)

李欣宇、余俊鹏、吴伟东

展开 >

广东工业大学 土木与交通工程学院,广东 广州 510006

广东省国土资源测绘院,广东 广州 510000

单光子激光雷达 ICESat-2 点密度 K均值聚类 CSF算法

2024

广东工业大学学报
广东工业大学

广东工业大学学报

影响因子:0.628
ISSN:1007-7162
年,卷(期):2024.41(6)