首页|旋风分离器分离效率预测模型研究

旋风分离器分离效率预测模型研究

扫码查看
旋风分离器是化工领域常用的气-固分离设备,分离效率是其设计及运行中的关键参数。本研究构建表征分离效率的多参数模型,用于分析影响分离效率的关键因素;同时建立基于计算流体动力学(CFD)的预测模型,通过仿真获得分离效率模拟值;另外,搭建旋风分离器试验装置,通过真实试验获得分离效率试验值,以此计算预测模型结果的相对误差。结果表明,分离效率受气体速度、粉体颗粒尺寸、粉体颗粒密度、分离半径、气体粘度的显著影响;其中,与气体速度、粉体颗粒尺寸、粉体颗粒密度呈正相关;与分离半径、气体粘度呈负相关。此外,由预测模型获得的分离效率值为90。278%,由验证实验获得的分离效率值为 82。90%,相对误差约为 8。90%。上述研究为旋风分离器分离效率计算提供新方法,也为旋风分离器设计优化提供理论依据。
Research on the Prediction Model of Separation Efficiency of Cyclone Separators
Cyclone separator is a commonly used gas-solid separation equipment in the chemical industry,and separation efficiency is a key parameter in its design and operation.This study constructs a multi parameter model to characterize separation efficiency and analyze the key factors affecting separation efficiency.Simultaneously establish a numerical calculation model and obtain simulated separation efficiency values through simulation.In addition,a cyclone separator test device is constructed to obtain separation efficiency test values through real experiments,and to calculate the relative error of the predicted model results.The results show that the separation efficiency is significantly affected by gas velocity,powder particle size,particle density,separation radius,and flue gas viscosity.There is a positive correlation with the inlet gas velocity,powder particle size,and particle density;Negative correlation with separation radius and smoke viscosity.The results show that the separation efficiency value obtained by the prediction model is 90.278%.The separation efficiency value obtained from the validation experiment is 82.90%,with a relative error of approximately 8.90%.This prediction model can be basically used for calculating the separation efficiency of cyclone separators.The above research provides a new method for calculating the separation efficiency of cyclone separators,and also provides a theoretical basis for optimizing the design of cyclone separators.

powderparticlesimulationmodelCFD

陈计远、戈瑶、张果、阚琛、张雪、张文

展开 >

中国核电工程公司,北京 100840

粉体 颗粒 模拟 模型 CFD

2024

广东化工
广东省石油化工研究院

广东化工

影响因子:0.288
ISSN:1007-1865
年,卷(期):2024.51(9)
  • 14