首页|基于改进PSO-BP神经网络的热采管柱应力预测

基于改进PSO-BP神经网络的热采管柱应力预测

扫码查看
稠油热采过程中,油套管柱由于在温度、地层等多重载荷作用下发生塑性形变进而导致断裂或失效.文中根据热采管柱高温服役工况,引入异步变化学习因子和自适应权重建立输入参数为注汽温度、井深、非均匀系数和水泥环温度,输出参数为套管应力的改进PSO-BP模型.文中以N80 热采套管为例,选取260、280、300、320、340℃5 种温度工况下有限元模拟结果作为训练数据,对比BP 模型、GA-BP模型、MEA-BP模型、PSO-BP 模型和改进PSO-BP 模型在 300℃工况温度下井深 200、300、400、500、600、700 m处套管应力的预测值和试验值、有限元计算值.结果表明:改进PSO-BP 模型预测的应力与试验值最接近,最大和最小误差分别为2.69%和0.06%.最后从训练数据、预测误差、计算时间等方面对建立的改进PSO-BP模型进行了评价,为热采管柱服役过程中的强度安全分析提供智能高效的模型.
Prediction of Thermal Recovery Casing Stress Based on Improved PSO-BP Neural Network
In the process of heavy oil thermal recovery,plastic deformation of the oil casing string under the action of multi-ple loads such as temperature and formation leads to fracture or failure.In this paper,according to the high temperature service condition of the thermal recovery pipe column,the asynchronous change learning factor and adaptive weights were introduced to establish an improved PSO-BP model with the input parameters of steam injection temperature,well depth,non-uniformity coeffi-cient and cement ring temperature,and the output parameter of casing stress.In the paper,taking N80 thermal casing as an example,the finite element simulation results at five temperature conditions,namely,260℃,280℃,300℃,320℃and 340℃,were selected as the training data to compare the predicted and experimental values and finite element calculated values of the casing stresses of the BP model,the GA-BP model,the MEA-BP model,the PSO-BP model,and the improved PSO-BP model at the well depths of 200 m,300 m,400 m,500 m,600 m,and 700 m at the temperature of 300℃working condition.The results show that the stresses predicted by the improved PSO-BP model are the closest to the test values,with the maximum and minimum errors of 2.69%and 0.06%,respectively.Finally,the full paper evaluates the established improved PSO-BP model in terms of training data,prediction error,and computation time,which provides an intelligent and efficient model for the strength and safety analysis of thermal casing columns in the service process.

BP neural networkstresspredictive modelparticle swarm optimisation algorithm

崔璐、李明峰、王澎、牛科、邵帅超、常文权

展开 >

西安石油大学机械工程学院

蜂巢动力系统(江苏)有限公司

BP神经网络 应力 预测模型 粒子群优化算法

陕西省自然科学基金陕西省教育厅项目西安石油大学研究生创新与实践能力培养计划项目

2023-JC-YB-37623JP127YCS22214259

2024

管道技术与设备
沈阳仪表科学研究院

管道技术与设备

影响因子:0.504
ISSN:1004-9614
年,卷(期):2024.(2)
  • 27