首页|基于声发射参数和支持向量机的天然气站场阀门内漏诊断

基于声发射参数和支持向量机的天然气站场阀门内漏诊断

扫码查看
为保障天然气站场系统的安全性,应用声发射技术对站场开展闸阀内漏诊断研究.首先开展阀门内漏实验,采集并分析阀门内漏声发射信号数据;然后使用小波包阈值降噪处理阀门内漏信号,并从信号的波动特性、冲击特性和所含能量 3 个角度进行特征提取,将提取的 6 种特征参数作为后续SVM算法的阀门内漏诊断输入特征;最后采用K折交叉验证法寻找SVM算法模型的最优参数c、g,并建立SVM阀门内漏诊断模型.结果表明,建立的SVM模型对闸阀内漏的分类准确率为97.2%.
Internal Leakage Diagnosis of Natural Gas Station Valve Based on Acoustic Emission Parameters and Support Vector Machine
In order to ensure the safety of the natural gas station and yard system,the study on internal leakage diagnosis of gate valve in station and yard was carried out by acoustic emission technology.The valve internal leakage experiment was carried out to collect and analyze the acoustic emission signal data of valve internal leakage,and the wavelet packet threshold noise re-duction was used to process the valve internal leakage signal.In addition,feature extraction was carried out from the wave cha-racteristics,impact characteristics and energy contained in the signal,and the extracted six feature parameters were used as the input features of the subsequent SVM algorithm for valve internal leakage diagnosis.Lastly,K fold cross-validation method was used to find the optimal parameters c and g of the SVM algorithm model,and SVM valve internal leakage diagnosis model was es-tablished.The results show that the accurate identification rate of the gate value internal leakage of the established SVM model is 97.2%.

valve leakageacoustic emissionsupport vector machinesignal analysis

李美瑜、成思搏、谌枭、吕聪敏、雷明月、吴宇蕊、朱佳丽

展开 >

重庆科技大学

阀门内漏 声发射 支持向量机 信号分析

重庆科技大学研究生科技创新计划项目

YKJCX2220113

2024

管道技术与设备
沈阳仪表科学研究院

管道技术与设备

影响因子:0.504
ISSN:1004-9614
年,卷(期):2024.(5)
  • 5