首页|基于深度学习的改进轻量化红外目标检测算法

基于深度学习的改进轻量化红外目标检测算法

扫码查看
基于深度学习算法的红外目标检测与识别技术是学术界研究的一个重要领域.基于对红外目标检测与识别的高精度和算法的轻量化两个目标的前提之下,在YOLOv5n网络模型的基础上,首先使用扩张式残差卷积(DWR)替换网络中的C3模块,实现了网络的轻量化,并且使网络可以灵活的提取不同尺度的特征.然后针对红外图像分辨率低且细节模糊的特点,用AF-FPN代替原来的FPN结构,提高了多尺度红外图像目标识别的能力.最后采用iRMB注意力机制插入到检测层,使得模型轻量化的同时检测精度仍能与原来的YOLOv5n相近.实验结果表明,改进模型较原YOLOv5n网络值提升了 0.8%,模型体积下降了 17%,实现了模型轻量化的同时基本不影响模型检测精度,满足体积小和轻量化需求,适合部署到嵌入式设备.
Improved Lightweight Infrared Target Detection Algorithm Based on Deep Learning
Infrared target detection and recognition based on deep learning algorithm is an important field in academic research.In the background of high precision in infrared target detection and recognition and lightweight algorithms,and based on YOLOv5n network model,at first,the C3 module in the network is replaced with dilated residual convolution(DWR)to achieve lightweight of the network and enable the network to flexibly extract features of different scales.And then,in response to the low resolution and blurred details of infrared images,AF-FPN is used to replace the original FPN structure to improve the ability of multi-scale infrared image target recognition.At last,the iRMB attention mechanism is inserted into the detection layer,making the model lightweight while still maintaining detection accuracy similar to the original YOLOv5n.Experimental results show that the network value of the improved model has increased by 0.8%compared to the original YOLOv5n network,the model volume has re-duced by 17%,and lightweight model without affecting the accuracy of model detection is achieved,which meets the requirements of small and lightweight size and is suitable for deployed on embedded devices.

infrared targetdetection and identificationdeep learninglightweightYOLOv5n

李晓光、何鑫、张义伟、王嘉雯

展开 >

中国电子科技集团公司光电研究院,天津

北京邮电大学人工智能学院,北京

中国市政华北设计研究总院有限公司,天津

红外目标 检测与识别 深度学习 轻量化 YOLOv5n

2024

光电技术应用
东北电子技术研究所

光电技术应用

影响因子:0.406
ISSN:1673-1255
年,卷(期):2024.39(4)
  • 2