首页|两项修正PRP共轭梯度算法在稀疏优化中的应用

两项修正PRP共轭梯度算法在稀疏优化中的应用

APPLICATION OF TWO-TERM MODIFIED PRP CONJUGATE GRADIENT ALGORITHMS IN SPARSE OPTIMIZATION

扫码查看
In recent years,the sparse optimization problem has attracted exten-sive attention in many fields such as scientific research and engineering practice.The conjugate gradient method is suitable for large-scale problems due to its sim-plicity,low memory,and global convergence.We combine two-term modified con-jugate gradient method with a smoothing strategy to solve the sparse optimization problems and establish the global convergence of the algorithm.Finally,we select some representative sparse recovery problems,combine our new algorithm,and design relevant numerical experiments.By comparing with the existing excellent algorithms,it is proved that the new algorithm has better competitiveness.

Smooth Conjugate Gradient MethodSparse RecoveryConvergence

李凯、林彭壮汉、胡子健、程万友

展开 >

东莞理工学院计算机系,东莞 523808

Smooth Conjugate Gradient Method Sparse Recovery Convergence

国家自然科学基金国家自然科学基金国家自然科学基金广东省自然科学基金广东省普通高等学校重点领域专项

1227118711961011119711062022A15150105672021ZDZX1054

2024

高等学校计算数学学报
南京大学

高等学校计算数学学报

CSTPCD
影响因子:0.164
ISSN:1000-081X
年,卷(期):2024.46(2)