首页|基于多特征增强融合的交流接触器状态表征

基于多特征增强融合的交流接触器状态表征

扫码查看
准确掌握交流接触器的运行状态是实现交流接触器智能化的基础,为此提出了一种基于多特征增强融合的状态表征方法.首先针对交流接触器特征参数非线性、非平稳、随机变化、趋势性不明显但符合一定统计特性的特点,利用Wasserstein概率距离进行特征变换得到趋势性较强的初态特征;然后以多属性初态特征参数为驱动,考虑参数间强耦合的特点,利用自编码器神经网络进行特征压缩提取,剔除冗余信息,保留有用信息;在此基础上,以压缩提取特征为输入,通过自组织映射神经网络来实现多维特征的竞争性融合输出,得到交流接触器运行状态的综合健康指标,实现交流接触器状态的定量表征.最后,结合实测数据验证了所提方法的有效性,并与其他 2种方法相比较,结果表明:所提方法得到的健康指标趋势性、单调性和鲁棒性相比其他 2种方法分别至少提高了4%、24%和5%,研究可为下一步研究交流接触器的精准控制和智能化提供参考.
State Characterization of AC Contactor Based on Multi-feature Enhanced Fusion
Accurately grasping the operating state of AC contactors is the basis for realizing the intelligentization of AC contactors.To this end,a state representation method based on multi-feature enhanced fusion is proposed.Firstly,accord-ing to the characteristics of AC contactor's characteristic parameters of nonlinear,non-stationary,random change,and insignificant trend but in line with certain statistical characteristics,the Wasserstein probability distance is used to carry out feature transformation to obtain the initial state features with strong trend.Driven by the dynamic feature parameters and after the characteristics of strong coupling between parameters being taken into consideration,the auto-encoder neural network is used for feature compression and extraction,redundant information is eliminated,and useful information is re-tained.The neural network is used to realize the competitive fusion output of multi-dimensional features,to obtain the comprehensive health index of the operating state of the AC contactor,and to realize the quantitative representation of the state of the AC contactor.Finally,combined with the measured data,the effectiveness of the proposed method is veri-fied.Compared with the results from other two methods,the results show that the health index trend,monotonicity and robustness obtained by the proposed method are improved by at least 4%,24%and 5%,which can provide references for the next study on the precise control and intelligence of AC contactor.

AC contactormulti-feature fusionstate characterizationWasserstein distanceautoencoderself-organizing maps

蒋幸伟、曹云东、刘洋、刘树鑫、高书豫、周柱

展开 >

沈阳工业大学教育部特种电机与高压电器重点实验室,沈阳 110870

交流接触器 多特征融合 状态表征 Wasserstein距离 自编码器 自组织映射神经网络

辽宁省科技重大专项辽宁省教育厅项目沈阳中青年科技创新人才计划

2020JH1/10100012LJGD2020001RC210354

2024

高电压技术
中国电力科学研究院 中国电机工程学会

高电压技术

CSTPCD北大核心
影响因子:2.32
ISSN:1003-6520
年,卷(期):2024.50(1)
  • 18