首页|正极性直流电场对绝缘子雾凇覆冰的影响机理及覆冰试验验证

正极性直流电场对绝缘子雾凇覆冰的影响机理及覆冰试验验证

扫码查看
复杂大气环境下绝缘子覆冰是影响电网安全运行的关键科学问题.与交流相比,直流电场对荷电水滴具有较强的吸附作用,但鲜有研究涉及.基于场致荷电、流体力学和电磁学原理,对两种典型悬式绝缘子开展了电场-流场耦合仿真分析以及自然覆冰试验研究.结果表明,荷电水滴在直流电场中趋向于沿电场线运动,且其轨迹偏移量随着外施电压和水滴直径的增加而增大,而随着风速的增加而减小;直流电场下绝缘子表面产生冰树枝,不同绝缘子表面法向电场分量存在较大差异,进而影响冰树枝的生长特性;随着外施电压的升高,冰树枝逐渐从绝缘子伞裙边缘扩散至其表面,且冰树枝尖端逐渐变钝;带电情况下两种绝缘子覆冰量和覆冰长度大于不带电情况,且增长幅度均超过15%.研究结果对于建立带电绝缘子覆冰增长模型奠定了基础.
Influence Mechanism of Positive DC Electric Field on Rime Ice Accretion on the Insulators and Its Experimental Verification
Insulator icing is a key scientific problem in a complex atmospheric environment,which impairs the safe op-eration of power grid.Compared with the AC,DC electric field exerts adsorption on supercooled water droplets.However,few studies on this issue are available.In this paper,an electric field-flow field coupled simulation,as well as natural icing tests were carried out on two typical suspension insulators based on the principles of field charging,fluid mechanics,and electromagnetics.The results indicate that charged water droplets tend to move along the electric field lines in a DC elec-tric field,and their trajectory deviation increases with increasing applied voltage and droplet diameter,while decreases with an increase of wind speed.Under DC electric field,ice branches form on the surface of the insulators.And there are significant differences in the normal electric field components on different insulator surfaces,which further affect the growth characteristics of ice branches.As the applied voltage increases,ice branches gradually spread from the edge of the shed to its surface.Moreover,the tips of ice branches become increasingly blunt.Ice amount and ice length of two in-sulators under energization are greater than those under non-energization,and the growth rate is more than 15%.The results lay the foundation for establishing a model for ice growth on energized insulator.

positive DC electric fieldinsulator icingcharged water dropletsice branchelectric field-flow field cou-pling

胡玉耀、刘宗源、李欣、蒋兴良、咸日常、杜钦君

展开 >

山东理工大学山东省智能电网及装备工程实验室,淄博 255000

贵州电网有限责任公司电力科学研究院,贵阳 213022

重庆大学输配电装备及系统安全与新技术国家重点实验室,重庆 400044

正极性直流电场 绝缘子覆冰 荷电水滴 冰树枝 电场-流场耦合

国家自然科学基金

51907109

2024

高电压技术
中国电力科学研究院 中国电机工程学会

高电压技术

CSTPCD北大核心
影响因子:2.32
ISSN:1003-6520
年,卷(期):2024.50(2)
  • 18