首页|正极性操作冲击电压下含悬浮导体长空气间隙放电发展过程

正极性操作冲击电压下含悬浮导体长空气间隙放电发展过程

扫码查看
带电作业组合间隙是典型的含悬浮导体长空气间隙,含悬浮导体长空气间隙放电机理研究对提升带电作业安全性具有重要意义.为此搭建了棒-棒-板含悬浮导体长空气间隙放电观测平台,开展了悬浮导体位于不同位置的间隙放电观测试验,获得了施加电压、高电位放电电流以及放电光学图像等数据,研究了间隙的放电发展过程.研究结果表明,含悬浮导体长空气间隙这2个子间隙的放电会同时进行并相互影响,子间隙1放电主要由下行先导-流注体系和上行流注组成,子间隙2放电主要由先导-流注体系组成;悬浮导体位置会影响放电发展各阶段的起始时刻和放电发展时间;悬浮导体在任意位置时,放电从子间隙1起始,子间隙2中放电在子间隙1击穿前起始,子间隙2击穿不早于子间隙1击穿;子间隙1流注-先导转化所需临界电荷为0.26μC,与长空气间隙相似;预放电电流幅值、先导发展速度等放电发展特征与长空气间隙存在差异.
Development Process of Discharges in Long Air Gaps Containing a Floating Conductor Under Positive Switching Impulses
The combined air gap for live-line work is a typical long air gap containing a floating conductor. The discharge mechanism of long air gaps containing a floating conductor is the fundamental theory for improving the safety of live-line work. In this paper, an observation platform of long air gaps containing a floating conductor with a configuration of the rod-rod-plane gap was established. The discharge observation tests of air gaps with the floating conductor at different po-sitions were carried out. The data of the applied voltage, the high potential discharge current, and the discharge optical images were obtained to study the discharge development process. The results show that the discharges in the two sub-gaps of a long air gap containing a floating conductor proceed simultaneously and interact with each other, with the discharge in sub-gap 1 consisting mainly of the downward leader-corona region and the upward streamer, and the dis-charge in sub-gap 2 consisting mainly of the leader-streamer region. The position of the floating conductor affects the inception instant of each stage of the discharge development and the time of discharge development. When the floating conductor is in any position, the discharge starts from sub-gap 1 and the discharge in sub-gap 2 starts before the break-down of sub-gap 1, and the breakdown of sub-gap 2 is not earlier than the breakdown of sub-gap 1. The critical charge required for the streamer-leader transition in sub-gap 1 is 0.26 μC, which is similar to long air gaps. The discharge devel-opment characteristics such as pre-discharge current amplitude and leader development speed differ from those of long air gaps.

live-line workfloating conductorlong air gapsdischarge development processpositive switching impulse

高嘉辰、丁同殊、方雅琪、刘凯、伍绍铖、王力农

展开 >

湖南大学电气与信息工程学院,长沙410082

中国电力科学研究院有限公司电网环境保护全国重点实验室,武汉430074

湖北工业大学新能源及电网装备安全监测湖北省工程研究中心,武汉430068

武汉大学电气与自动化学院,武汉430072

展开 >

带电作业 悬浮导体 长空气间隙 放电发展过程 正极性操作冲击电压

国家自然科学基金电网环境保护全国重点实验室开放基金

52107146GYW51202301437

2024

高电压技术
中国电力科学研究院 中国电机工程学会

高电压技术

CSTPCD北大核心
影响因子:2.32
ISSN:1003-6520
年,卷(期):2024.50(4)
  • 27