首页|基于热成像的锂离子电池智能故障定位技术

基于热成像的锂离子电池智能故障定位技术

扫码查看
随着新能源发电、电动汽车等的发展,目前对储能技术的要求不断提高.其中,锂离子电池因其环境友好、能量密度高、使用寿命长等优点被广泛应用于各类储能系统中.为锂离子电池配备合理的热故障诊断可以避免热失控现象的发生,确保电池安全可靠运行.该研究提出了锂离子电池智能感知(lithium-ion battery intelligent perception,LBIP)来建立锂离子电池的热故障诊断模型.LBIP包括特征提取网络、区域提交网络(region proposal network,RPN)、感兴趣区域对齐(region of interest align,ROIAlign)以及Mask分支.选择Ansys Fluent软件进行锂离子电池的有限元仿真.LBIP处理电池表面的热成像图像,对问题电池进行识别,并进行问题电池的定位与分割.结果表明,故障电池的识别准确率可达95%.
From Time-series to Vision:Lithium-ion Battery Intelligent Perception(LBIP)for Thermal Fault Location
With the development of new energy power generation,electric vehicles,etc.,the requirements for energy storage are constantly increasing.Lithium-ion batteries are widely used in various energy storage systems due to their ad-vantages of environmental friendliness,high energy density,and long lifespan.Providing reasonable thermal fault diagnosis for lithium-ion batteries can avoid thermal runaway and ensure safe and reliable operation of the batteries.This study proposes lithium-ion battery intelligent perception(LBIP)to build a thermal fault diagnosis model for lithium-ion batteries.LBIP includes the backbone for feature extraction,region proposal network(RPN)for proposals generation,and fine-grained localization.The Ansys Fluent software is selected for finite element simulation of lithium-ion batteries.The model processes the thermal imaging image of the battery surface,identifies the problematic battery,and localizes the problematic battery.Results shows that the recognition accuracy of the faulty battery can reach 95% .

lithium-ion batterythermal diagnosisMask R-CNNdeep learninginstance segmentation

田璐羽、董朝宇、穆云飞、余晓丹、肖迁、贾宏杰

展开 >

天津大学电气自动化与信息工程学院,天津 300072

锂离子电池 热故障诊断 Mask R-CNN 深度学习 实例分割

国家自然科学基金英国工程与物理科学研究委员会联合基金英国工程与物理科学研究委员会联合基金

5227711652061635103EP/T021969/1

2024

高电压技术
中国电力科学研究院 中国电机工程学会

高电压技术

CSTPCD北大核心
影响因子:2.32
ISSN:1003-6520
年,卷(期):2024.50(6)
  • 7