首页|可解释性验证的光伏出力实时纠偏概率预测模型

可解释性验证的光伏出力实时纠偏概率预测模型

扫码查看
为了解决目前光伏出力概率预测模型会随时间产生模型漂移且缺乏可解释性的问题,提出一种可解释性验证的光伏出力实时纠偏概率预测模型.首先在考虑季节的前提下构建了基于自然梯度提升(natural gradient boosting,NGBoost)的光伏出力概率预测模型,通过超参数调优得到不同季节的光伏出力概率预测模型;其次通过分析光伏出力对象的时序特殊性,针对性地提出了一种简单有效的光伏出力概率预测实时纠偏策略,从而在考虑实时数据和历史数据的情况下对不确定性预测结果进行修正,使模型能够进行随时间演变的动态预测;然后结合沙普利加性(Shapley additive explanations,SHAP)方法挖掘主导因素对光伏出力不确定性的影响,旨在通过全局解释和局部解释探讨不同季节下各输入特征对光伏出力不确定性的贡献度,进一步验证所构建模型预测过程和修正策略的合理性;最后采用公开数据集进行仿真验证.研究结果表明:所提模型的连续概率排位分数处于9.89~24.01 kW之间,与其他模型相比精度较高,并且能够分析复杂预测过程,为光伏出力不确定性预测提供有效的理论支持.
Interpretability Verification of Real-time Deviation Correction Probability Prediction Model of Photovoltaic Output
In order to solve the problem that the photovoltaic output(PV)probabilistic prediction model may generate model drift over time and lack of interpretability,an interpretability verified real-time corrective probabilistic prediction model for PV output is proposed.Firstly,a PV output probabilistic prediction model based on natural gradient boosting(NGBoost)is constructed under the premise of considering seasons,and the PV output probabilistic prediction models of different seasons are obtained through hyper-parameter tuning.Secondly,by analyzing the temporal specificity of PV out-put objects,a simple and effective real-time bias correction strategy of PV output probabilistic prediction is proposed,so as to solve the current problem of model drift over time and lack of interpretability.Moreover,we combine the Shapley additive explanations(SHAP)method to explore the influences of dominant factors on the uncertainty of PV output,aim-ing to explore the contribution of each input feature to the uncertainty of PV output in different seasons through global and local explanations,and further validate the reasonableness of the prediction process and the correction strategy of the constructed model.Finally,the proposed model is validated by simulations using public data sets.The results show that the continuous probability ranking scores of the proposed model are in the range of 9.89~24.01 kW,which are more accurate compared with other models and can analyze the complex prediction process,providing effective theoretical supports for the prediction of PV output uncertainty.

photovoltaic outputuncertainty predictionNGBoostSHAP methodinterpretabilityreal-time deviation correction

蒋莹莹、田建艳、姬政雄、菅垄、刘竖威

展开 >

太原理工大学电气与动力工程学院,太原 030024

光伏出力 不确定性预测 NGBoost SHAP方法 可解释性 实时纠偏

山西省自然科学基金

202303021221026

2024

高电压技术
中国电力科学研究院 中国电机工程学会

高电压技术

CSTPCD北大核心
影响因子:2.32
ISSN:1003-6520
年,卷(期):2024.50(9)
  • 20