首页|基于自编码器-受限时序卷积网络的数据驱动配电网无功优化策略

基于自编码器-受限时序卷积网络的数据驱动配电网无功优化策略

扫码查看
配电网中可再生能源渗透率的提高带来了频繁的电压越限问题.作为一种被广泛研究的方法,无功优化方法已经成功应用到配电网中以降低网损、优化电压质量.该文提出一种基于自编码器-受限时序卷积网络的新型数据驱动配电网无功优化策略,该策略通过 3 个阶段来协调光伏逆变器、电容器组等多种多时间尺度的无功调节设备.首先,将无功优化问题建模为混合整数二阶锥规划问题,求解出历史最优无功调度策略;然后,使用历史运行数据和最优策略训练所提网络模型,并通过矫正层规避不合理结果;在实际运行中,训练好的模型依据系统测量值给出无功优化策略以应对配电网的波动.最后,通过改进IEEE 33节点算例仿真实验验证,所提方法能够达到混合整数二阶锥模型98.80%的准确度而仅消耗其7.14%的时间;与其他流行的深度学习方法相比,具有更佳的性能和更好的实用性.
Data-driven Reactive Power Optimization Strategy of Distribution Network Based on Autoencoder Constrained Temporal Convolutional Networks
The increasing penetration of renewables in the distribution networks causes frequent voltage violations.As a widely studied method,reactive power optimization has been successfully applied to distribution networks to reduce power losses and stabilize voltages.By coordinating multiple multi-timescale regulation devices like capacitor banks and smart inverters through three stages,this paper proposes an innovative data-driven reactive power optimization strategy by using autoencoder and constrained temporal convolutional networks.First,the optimization problem is formulated as a mixed-integer second-order cone programming to solve for the historical optimal reactive power dispatching strategies.Then,the proposed model is trained with the historical operational data and the optimal strategies,and the unreasonable results are circumvented by a corrective layer.In actual applications,the well-trained model gives optimization solutions based on real-time system measurements to deal with fluctuations in the distribution networks.Finally,as verified by a modified IEEE 33-bus system,the proposed method can achieve 98.80%accuracy of the mixed-integer second-order cone model with consuming only 7.14%of its time.Compared to other popular deep learning methods,the proposed method has the best performance and better practicality.

reactive power optimizationconstrained temporal convolutional networksdata-drivensecond-order cone programmingautoencoder

苗洛源、彭勇刚、胡丹尔、李子晨

展开 >

浙江大学电气工程学院,杭州 310027

无功优化 受限时序卷积网络 数据驱动 二阶锥规划 自编码器

国家重点研发计划国家自然科学基金

2020YFB090600251877188

2024

高电压技术
中国电力科学研究院 中国电机工程学会

高电压技术

CSTPCD北大核心
影响因子:2.32
ISSN:1003-6520
年,卷(期):2024.50(9)
  • 9