首页|基于缺失数据填补的油浸式变压器故障诊断

基于缺失数据填补的油浸式变压器故障诊断

扫码查看
数据质量是影响变压器故障诊断模型准确性及可靠性的重要因素.针对现有变压器故障诊断模型对数据完整性要求较高等问题,以油浸式变压器为研究对象,提出了一种基于缺失数据填补的变压器故障诊断方法.首先,采用极端随机树(extremely randomized trees,ERT)算法对变压器样本的缺失数据进行填补,通过与多种回归模型对比,评价ERT模型的预测效果.然后,基于油中溶解气体数据,提取能够反映变压器运行状态的 16 维特征集合,形成完备信息的变压器故障诊断样本.最后,利用树结构概率密度估计(tree-structured parzen estimator,TPE)算法实现梯度提升树(gradient boosting decision tree,GBDT)模型的参数优化,构建基于TPE-GBDT的变压器故障诊断模型.研究结果表明,在对缺失率为10%的变压器样本数据进行填补时,ERT算法的决定系数达到0.96,高于线性回归和随机森林回归等算法.此外,基于ERT填补后的样本数据在TPE-GBDT模型的平均诊断准确率和标准差分别为90.1%和0.036,其准确性和稳定性均优于线性判别分析和随机森林分类等算法.该方法能够有效提升变压器样本质量和故障诊断效果,可为变压器运维检修提供针对性的指导建议.
Fault Diagnosis for Oil-immersed Transformer Based on Missing Data Imputation
Data quality is an important factor affecting the accuracy and reliability of transformer fault diagnosis models.Aiming at the existing transformer fault diagnosis model with higher requirements for data integrity,we proposed a fault diagnosis method based on missing data imputation for oil-immersed transformers.Firstly,the missing data of transformer samples were filled by using the extremely randomized trees(ERT),and the predictive effect of ERT model was evaluated by comparing with various regression models.Then,a 16-dimensional feature set representing operating status of trans-formers was extracted based on the dissolved gas data in oil,and the transformer fault diagnosis samples with complete information were obtained.Finally,the tree-structure probability density estimation(TPE)algorithm was used to achieve the parameter optimization of the gradient boosting decision tree(GBDT)model,and a transformer fault diagnosis model based on TPE-GBDT was constructed.The results show that,when filling the transformer sample data with a missing rate of 10%,the coefficient of determination of the ERT algorithm reaches 0.96,which is higher than that of the algorithms such as linear regression and random forest regression.Moreover,the average diagnostic accuracy and standard deviation of the TPE-GBDT model based on the ERT imputed sample data are 90.1%and 0.036,respectively,which are superior to those of the algorithms such as linear discriminant analysis and random forest classification.This method can be adopted to effectively improve the transformer sample quality and the fault diagnosis effect,which can provide targeted guidance suggestions for transformer operation and maintenance.

transformermissing data imputationextremely randomized treesfault diagnosisgradient boosting treedissolved gas analysis

廖才波、杨金鑫、邱志斌、胡雄、蒋子豪、李欣

展开 >

南昌大学能源与电气工程系,南昌 330031

国网江西省电力有限公司南昌供电分公司,南昌 330069

变压器 缺失数据填补 极端随机树 故障诊断 梯度提升树 油中溶解气体分析

国家自然科学基金国家自然科学基金江西省自然科学基金

621630255236700120212ACB212007

2024

高电压技术
中国电力科学研究院 中国电机工程学会

高电压技术

CSTPCD北大核心
影响因子:2.32
ISSN:1003-6520
年,卷(期):2024.50(9)
  • 14