首页|基于DFT+U理论的SF6分子与TiO2(001)表面吸附研究

基于DFT+U理论的SF6分子与TiO2(001)表面吸附研究

扫码查看
SF6气体具有极强的温室效应,针对SF6废气降解和转化的研究对环境保护具有重要意义.为此基于DFT+U理论,研究了SF6分子在TiO2(001)缺陷表面的吸附分解过程.结果表明,SF6分子与TiO2表面之间存在着很强的相互作用,吸附能达到-5.280 eV,推测这是一个化学吸附过程.根据Mulliken电荷分析,电子从TiO2表面转移到SF6气体分子,在此过程中,SF6表现为电子受体,TiO2表现为电子供体.根据态密度结果分析,SF6分子的S原子和F原子与TiO2表面的Ti原子和O原子之间存在明显的电子轨道重叠.除此之外,差分电荷密度结果也证实了这一电荷转移过程.吸附前后,SF6的分子结构发生了显著变化,S—F键的拉长使得SF6分子更易发生分解.研究表明,TiO2具有催化降解SF6绝缘气体的潜力,该研究为高效无害化处理SF6气体的实验研究提供了理论支撑.
Study on the Adsorption of SF6 Molecules on the Surface of TiO2(001)Based on DFT+U Theory
SF6 gas exhibits a potent greenhouse effect.Research on SF6 degradation and conversion is of great signifi-cance for environmental protection.Based on the DFT+U theory,the adsorption and decomposition processes of SF6 molecules on the defective surface of TiO2(001)were investigated.The results show that there is a strong interaction be-tween the SF6 molecules and the TiO2 surface,with adsorption energy reaching-5.280 eV,which is presumed to be a possible chemisorption process.According to the Mulliken charge analysis,electrons are transferred from the TiO2 sur-face to the SF6 molecules,in which SF6 behaves as an electron acceptor and TiO2 as an electron donor.According to the result analysis of the density of states,there is a clear overlap of electron orbitals between the S and F atoms of the SF6 molecule and the Ti and O atoms on the TiO2 surface.In addition,the differential charge density results also confirm this charge transfer process.The molecular structure of SF6 will change significantly before and after adsorption,and the elongation of the S—F bond will facilitate the SF6 molecule more susceptible to decomposition.The study shows that TiO2 has the potential to catalyse the degradation of SF6 insulating gas and provides theoretical supports for the experi-mental study of efficient and harmless treatment of SF6.

SF6TiO2degradationsurface adsorptionDFT study

张英、王明伟、高朋、李亚龙、张晓星

展开 >

贵州电网有限责任公司电力科学研究院,贵阳 550002

湖北工业大学新能源及电网装备安全监测湖北省工程研究中心,武汉 430068

SF6 TiO2 降解 表面吸附 DFT研究

贵州省科技支撑项目中国南方电网公司科技项目

黔科合支撑[2022]一般 207GZKJXM20220049

2024

高电压技术
中国电力科学研究院 中国电机工程学会

高电压技术

CSTPCD北大核心
影响因子:2.32
ISSN:1003-6520
年,卷(期):2024.50(9)
  • 9