首页|脉动风作用下悬垂绝缘子串风偏计算模型及特性分析

脉动风作用下悬垂绝缘子串风偏计算模型及特性分析

扫码查看
为探究脉动风下悬垂绝缘子串的动态风偏及其特性,弥补对其研究多集中于静力公式计算和有限元分析的不足,并为实际工程设计和线路风偏防治提供理论参考.假定脉动风下导线的响应为小变形并忽略其振型和连续档的影响,通过分析无高差线路中绝缘子串和导线的受力状态,在静力公式基础上引入惯性力,并考虑气动阻尼效应,根据达朗贝尔原理建立悬垂绝缘子串的风偏动力方程,可用4阶龙格库塔法对其进行求解.通过算例分析发现,该理论模型能够有效计算绝缘子串的风偏时程,且风偏角度围绕其均值浮动的范围会随风速的增大而减小;同时,脉动风对目标绝缘子串风偏角的动力放大系数主要在1.05~1.45之间,该动力放大效应不可忽视并会随着风速的增大而减小.
Calculation Model and Characteristic Analysis of Wind-induced Deflection of Suspension Insulator String Under Fluctuating Wind
This paper aims to explore the dynamic wind-induced deflection of suspension insulator string under fluctuating wind and its characteristics,to make up for the deficiency of its research mainly focuses on static formula calculation and finite element analysis,and to provide theoretical reference for design of practical projects and prevention of wind-induced deflection.The response of conductor under fluctuating wind is assumed to be small deformation and the effects of its vibration mode and continuous spans are ignored.By analyzing the force state of insulator string and con-ductors in the transmission line without height difference,inertial force is introduced on the basis of static formula,and the aerodynamic damping effect is considered.According to the d'Alembert's principle,a dynamic equation of wind-induced deflection of suspension insulator string is established and it can be solved by the fourth-order Runge-Kutta method.Through case analysis,it is found that this theoretical model can be adopted to effectively calculate the time his-tory of insulator string's wind-induced deflection,and the range of wind-induced deflection angle floating around its mean value decreases when wind speed increases.Besides,the dynamic amplification factor of fluctuating wind on the target insulator string's wind-induced deflection angle is mainly between 1.05 and 1.45,so the dynamic amplification effect cannot be ignored and it will decrease with the increase of wind speed.

suspension insulator stringwind-induced deflectionaerodynamic damping effectdynamic equationdis-tribution characteristicsdynamic amplification effect

闫聪、谢强、邹峥

展开 >

同济大学土木工程学院,上海 200092

工程结构服役性能演化与控制教育部重点实验室,上海 200092

中国电力工程顾问集团华北电力设计院有限公司,北京 100120

悬垂绝缘子串 风偏 气动阻尼效应 动力方程 分布特征 动力放大效应

2024

高电压技术
中国电力科学研究院 中国电机工程学会

高电压技术

CSTPCD北大核心
影响因子:2.32
ISSN:1003-6520
年,卷(期):2024.50(12)