首页|过渡金属LDH材料电解水析氧性能研究进展

过渡金属LDH材料电解水析氧性能研究进展

扫码查看
氢能作为一种清洁能源,具有解决环境污染和能源短缺问题的巨大潜力.电催化水分解是一种可持续的制氢技术,因其高效性和环境友好性而备受关注.然而,水分解过程中析氧反应(Oxygen evolution re-action,OER)动力学迟缓,通常成为限制整体水分解速率的瓶颈.因此,开发高效的OER催化剂是提高水分解效率的关键.过渡金属基层状双氢氧化物(Layered double hydroxides,LDH)材料,因其丰富的活性金属位点和可调的结构特性,在电催化水分解领域中展现出巨大潜力.研究表明,通过优化和修饰LDH结构,可以显著增强其在OER中的催化效能和稳定性.镍、钴、铁过渡金属基材料,因具有丰富的活性位点、高表面积和优异的电子传输特性,在水分解过程中表现出独特的优势.采用钨酸硼(BWO)阴离子插层的方法,诱导 NiFe LDH发生不可逆的晶格畸变,从而提升其 OER活性.D-NiFe LDH材料在10 mA∙cm-2电流密度下的过电势为209 mV,在500 mA∙cm-2电流密度下过电势为276 mV.此外,通过构建异质结构调节活性位点的电子结构,可进一步提高电催化性能.S掺杂的Co3Se4/Fe3Se4(S-Co3Se4/Fe3Se4)由CoFe-LDH纳米线-纳米片阵列构成,硫的掺杂不仅优化了电子结构,还增加了活性位点的数量.S-Co3Se4/Fe3Se4 在1.0 mol∙L-1 的KOH溶液中表现出优异的OER性能,在100 mA∙cm-2 的电流密度下过电势为255 mV,且稳定性良好.采用不同修饰方法,LDH材料的电催化性能均可得到显著提升,为实现高效、低成本的电催化水分解技术提供了新的可能性.
Progress on the Oxygen Precipitation Performance of Transition Metal LDH Materials for Electrolytic Water Precipitation
Hydrogen energy,as a clean energy source,holds significant potential in addressing environmental pollution and energy shortages.Electrocatalytic water splitting,a sustainable hydrogen production technology,has gained considerable attention for its high efficiency and environmental benefits.However,the Oxygen Evolution Reaction(OER)at the anode often limits the overall water splitting rate due to its sluggish kinetics.Therefore,developing efficient OER catalysts is essential to improve the efficiency of water splitting.Layered Double Hydroxides(LDH)materials are highly promising for electrocatalytic water splitting because of their abundant active metal sites and tunable structural properties.Research on LDH materials has shown that y modifying and optimizing their structures can significantly enhance both their catalytic activity and stability in OER.Transition metal-based electrocatalysts,particularly those based on nickel,cobalt,and iron,offer distinct advantages in water electrolysis due to their abundant active sites,high surface area,and rapid electron transport.The OER activity of NiFe LDH was enhanced through the boron tungstate(BWO)anionic intercalation method,which induced irreversible lattice distortion.The D-NiFe LDH material exhibited an OER overpotential of 209 mV at a current density of 10 mA∙cm-2,and the overpotential reached 276 mV at a current density of 500 mA∙cm-2.Additionally,the electronic structure of the active site was tuned by constructing a heterostructure S-doped Co3Se4/Fe3Se4(S-Co3Se4/Fe3Se4),formed by the unique nanowire-nanosheet array of CoFe-LDH.Sulfur doping not only adjusted the electronic structure but also increased the number of active sites.In 1.0 mol ∙ L-1 KOH solution,S-Co3Se4/Fe3Se4 demonstrated excellent OER performance with an overpotential of 255 mV at a current density of 100 mA∙cm-2 and exhibited good stability.The electrocatalytic performance of LDH materials was significantly improved through various modification strategies,providing new opportunities for efficient and low-cost electrocatalytic water splitting technology.

layered double hydroxidestwo-dimensional materialsheterogeneous structuredefect engineeringheteroatom dopingmorphology controlhydrogen production from waterOER

王清清、袁嘉璐、孙豫、胡文清、温斐航、乔健、孙银霞、邓哲鹏

展开 >

兰州交通大学化学化工学院,甘肃 兰州 730070

西北民族大学实验教学部,甘肃 兰州 730030

兰州兰石集团有限公司能源装备研究院,甘肃 兰州 730314

层状双氢氧化物 二维材料 异质结构 缺陷工程 杂原子掺杂 形貌控制 水制氢 OER

2024

材料研究与应用
广州有色金属研究院

材料研究与应用

影响因子:0.349
ISSN:1673-9981
年,卷(期):2024.18(6)