首页|基于Bi-LSTM-Dropout的蓄电池剩余使用寿命预测方法

基于Bi-LSTM-Dropout的蓄电池剩余使用寿命预测方法

Prediction Method of Battery Remaining Useful Life Based on Bi-LSTM-Dropout

扫码查看
蓄电池剩余使用寿命预测对能源的安全性和可持续发展至关重要.该文提出一种蓄电池剩余使用寿命的预测方法,利用蓄电池的历史运行数据和充放电周期,构建Bi-LSTM-Dropout网络模型.利用Bi-LSTM提取时间序列中蓄电池长期依赖的特征,采用Dropout优化算法降低Bi-LSTM网络模型的复杂度,提高模型的泛化能力.实验结果表明,该方法在测试集上的准确率达 96.2%,实现了蓄电池剩余使用寿命的精确预测.
The prediction of the remaining useful life of battery is crucial for the safety and sustainable development of energy.This article proposes a prediction method for the remaining useful life of battery,using historical operating data and charging and discharging cycles of battery to construct a Bi-LSTM-Dropout network model.Using Bi-LSTM to extract long-term dependent features of battery in time series,using Dropout optimization algorithm to reduce the complexity of Bi LSTM network model and improve its generalization ability.The experimental results show that the accuracy of this method on the test set reaches 96.2%,achieving accurate prediction of the remaining useful life of the battery.

batteryremaining useful lifeBi-LSTMdropout optimization algorithm

黄晓智、张华明、黄艺航、许志杰

展开 >

广东工业大学机电工程学院,广东 广州 510006

广东工业大学先进制造学院,广东 揭阳 522000

蓄电池 剩余使用寿命预测 Bi-LSTM Dropout优化算法

2024

自动化与信息工程
广东省科学院自动化工程研制中心 广州市自动化学会

自动化与信息工程

影响因子:0.319
ISSN:1674-2605
年,卷(期):2024.45(1)
  • 9